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Exercise 1. Consider the polynomial f = X4 − X2 + 1. Show that f is
irreducible in Z[X], but reducible in R[X], where R = Z[i] is the ring of
Gaussian integers.

Exercise 2. Decide for each of the following numbers whether or not it is
integral over Z.

(a) i+
√

2.

(b) ζ(2) = π2

6 .

(c) e2πi/3 + 2.

(d)
√

17 +
√

19.

Exercise 3. Determine each of the following quotient rings

R1 = Z[i]/(2), R2 = Z[i]/(3), R3 = Z[i]/(13),

and decide, whether or not they are a field, or a product of two fields, or
none of it.



Exercise 4. Let K = Q(
√
−19) and OK = Z

[
1+
√
−19
2

]
its ring of integers.

Decide whether or not

35 = 5 · 7 = (4 +
√
−19)(4−

√
19)

contradicts the unique factorization property for the ring OK .

Exercise 5. Decide for each ring below, whether it is integrally closed or
not and justify your decision.

Z[
√
−3], Z[

√
3], Z[

√
2 +
√

3], Z[
√

2,
√

3].

Exercise 6. Let d be a squarefree integer. Show that the ring Z[
√
d] has

Krull dimension 1, but need not be a PID. Indeed, show that all rings
Z[
√
d] for squarefree d ≤ −3 are not UFD’s and hence not PID’s.

Exercise 7 - extra. Determine all integer solutions of the Diophantine
equation y2 = x3 − 4 by using properties of the ring Z[i].

Exercise 8. Let Z be the integral closure of Z in C. Determine the
Krull dimension of Z and show that Z is not a PID. Show that Z has no
irreducible elements and decide which of the elements −1+

√
3

2 , −1+
√
−3

2 is in

Z.

Exercise 9. Let α = 3
√

2 and K = Q, L = Q(α). Compute the trace
trL/K(z) and the norm NL/K(z) of an arbitrary element z = a + bα + cα2

in L. Find an integral basis {1, ξ1, ξ2} of OL over Z (without proof) and
compute the discriminant D(1, ξ1, ξ2) in at least two different ways.



Exercise 10. Let A be a Dedekind domain and I a nonzero ideal of A.
Show that A/I is a product of principal ideal rings and I can be generated
as an ideal by two elements.

Exercise 11. Let R = Z[
√
−3] and let I be a nonzero ideal of R. Define

its norm by N(I) = #(R/I). Show that this norm is finite, but not
multiplicative.

Exercise 12. Consider the following ideals in Z[
√
−3],

P1 = (2), P2 = (3), P3 = (5), P4 = (1 +
√
−3), P5 = (2, 1 +

√
−3).

Which of these ideals is a prime ideal? Conclude that the unique decom-
position into prime ideals does not hold in Z[

√
−3], and that the ideal (2)

has no decomposition into prime ideals.

Exercise 13. Let A be a Dedekind domain and let I and I ′ be nonzero
ideals. Then there exists an ideal J coprime to I ′ such that IJ is principal.

Exercise 14- extra. Find without proof the imaginary quadratic number
fields Q(

√
−d) with minimal squarefree d > 0 having class group Z/n

for each 1 ≤ n ≤ 9. Can you find a prime p ≥ 3 such that (Z/p)3 is the
class group of an imaginary quadratic number field? What about p = 2?
Determine without proof all finite abelian groups of order n ≤ 100, which
do not arise as the class group of an imaginary quadratic number field.



Exercise 15. Let A = (aij) ∈Mn(R) and

Li(x1, . . . , xn) =
n∑
j=1

aijxj

be real linear forms for 1 ≤ i ≤ n with det(A) 6= 0. Let c1, . . . , cn be
positive real numbers with c1 · · · cn > |det(A)|. Show that there exists
integers m1, . . . ,mn, not all zero, such that |Li(m1, . . . ,mn)| < ci for all
1 ≤ i ≤ n.

Exercise 16. Let G = R · (1, α) be a line in the plane R2 with irrational
slope α ∈ R \ Q. Use Exercise 15 to show that for any ε > 0 there are
infinitely many lattice points P ∈ Z2 with distance d(P,G) < ε.

Exercise 17. Determine all quadratic number fields Q(
√
d) with a

squarefree integer d, such that the Minkowski bound is less than 2, and
compute this bound explicitly in these cases. Give an example of a number
field K with class number 1, but Minkowski bound BK > 2.

Exercise 18. Determine all groups G which can arise as the group of
roots of unity µK for a quartic number field K, i.e., with [K : Q] = 4.
Give an example of such a field K having the given unit group in each case.

Exercise 19. Let K be a number field of degree n with O×K ∼= Z × µK .
Determine all possible degrees n ≥ 1 and the group µK in all cases.



Exercise 20. Let K/Q be a cubic extension which is not Galois, with
negative discriminant d. So it has only one real embedding. View K this
way as a subfield of R. Let ε > 1 be a fundamental unit of K. Show that

|d|
4
< ε3 + 7.

Exercise 21- extra. Let K be a cubic number field with exactly one real
embedding. Use Hadamard’s inequality to show that for any unit u ∈ O×K
with u > 1 we have

|D(1, u, u2)| ≤ 3

(
u2 +

2

u

)(
u4 +

2

u2

)
.

Compare this with the estimate |D(1, u, u2)| < 4(u3 + 1
u3 + 6) < 4(u3 + 7)

from Exercise 20.

Exercise 22. Show that u = 1 + 3
√

2 + 3
√

4 is a fundamental unit of O×K
for the number field K = Q( 3

√
2).

Exercise 23. Let K = Q(
√

21). Show that u = 55 + 12
√

21 is a unit in
O×K , but not a fundamental unit.

Exercise 24. Compute the class number of Q(
√
−5) by using the an-

alytic class number formula and the fact that L(1, χ), for an imaginary
quadratic number field K with discriminant dK and quadratic character
χ(n) = (dK/n), can be computed by

L(1, χ) = − π

|dk|3/2

|dk|−1∑
r=1

χ(r)r.



Exercise 25. Give an example of number fields K and L and a prime
number p such that p is inert in K/Q and L/Q, but not in the compositum
KL/Q.

Exercise 26. Let K ⊆ E ⊆ L be a tower of number field extensions
with intermediate field E. Let OK ,OE,OL be the corresponding rings of
integers and p be a prime ideal in OK . Show that if p splits completely in
L, then p also splits completely in E.

Exercise 27. Let p be a prime not dividing n, K = Q(ζn) and p be a
prime ideal in OK lying over p. Show that the residual degree f = f(p, p)
is exactly the order of the element p ∈ (Z/n)×. In particular, p splits
completely in Q(ζn) if and only if p ≡ 1 mod n.

Exercise 28 - Extra. Let K = Q(ζ7) and F ⊆ K be the unique subfield
with [F : Q] = 3. Describe which rational primes p are ramified, split or
inert in F/Q in terms of congruences of p modulo 7.

Exercise 29. Let p be an odd prime and L = Q(ζp). Show that the
discriminant of L is given by

dL = (−1)
(p−1)(p−2)

2 pp−2.

Use the result that dK | dL for a tower of number fields Q ⊆ K ⊆ L, to
show that L contains a unique quadratic extension of Q, namely

K = Q
(√

(−1)
p−1
2 p

)
.



Exercise 30. Show that every quadratic extension of Q is contained in a
cyclotomic extension. Find a Galois extension of Q with non-abelian Galois
group and conclude that it is not contained in a cyclotomic extension.

Exercise 31. Show that the equation x2 = 2 has two solutions in Z7, the
ring of 7-adic integers, and compute its first ten 7-adic digits.

Exercise 32. Let p be a prime number and a an integer coprime to p.
Show that the sequence an = ap

n

converges in Qp and determine its limit.

Exercise 33. Let p be an odd prime. Show that Qp has no p-th root
of unity other than 1, and that Q2 has no 4-th roots of unity other than ±1.

Exercise 34. Show that the p-adic fields Qp are pairwise non-isomorphic
for different primes p ∈ P and p = ∞ by considering roots of unity in
these fields.

Exercise 35 - Extra. Let Z[[X]] denote the ring of formal power series
in one variable. Show that there is a ring isomorphism Z[[X]]/(X−p) ∼= Zp.



Exercise 36. Show that the p-adic series
∑∞

n=1 n ·n! and
∑∞

n=1 n
2 ·(n+1)!

converge in Qp with
∞∑
n=1

n · n! = −1,

∞∑
n=1

n2 · (n+ 1)! = 2,

whereas
∑∞

n=1
1
n! diverges in Qp.

Exercise 37. Let K be a field that is complete with respect to a non-
trivial absolute value |·|. Show that K is uncountable.

Exercise 38. Show that the equation x2 − 82y2 = 2 has solutions in Zp
for every prime p, and but has no solutions in Z.
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