Algebraic number theory
 - Exercises -

Exercises
WS 2021

Exercise 1. Consider the polynomial $f=X^{4}-X^{2}+1$. Show that f is irreducible in $\mathbb{Z}[X]$, but reducible in $R[X]$, where $R=\mathbb{Z}[i]$ is the ring of Gaussian integers.

Exercise 2. Decide for each of the following numbers whether or not it is integral over \mathbb{Z}.
(a) $i+\sqrt{2}$.
(b) $\zeta(2)=\frac{\pi^{2}}{6}$.
(c) $e^{2 \pi i / 3}+2$.
(d) $\sqrt{17}+\sqrt{19}$.

Exercise 3. Determine each of the following quotient rings

$$
R_{1}=\mathbb{Z}[i] /(2), \quad R_{2}=\mathbb{Z}[i] /(3), R_{3}=\mathbb{Z}[i] /(13),
$$

and decide, whether or not they are a field, or a product of two fields, or none of it.

Exercise 4. Let $K=\mathbb{Q}(\sqrt{-19})$ and $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ its ring of integers. Decide whether or not

$$
35=5 \cdot 7=(4+\sqrt{-19})(4-\sqrt{19})
$$

contradicts the unique factorization property for the ring \mathcal{O}_{K}.

Exercise 5. Decide for each ring below, whether it is integrally closed or not and justify your decision.

$$
\mathbb{Z}[\sqrt{-3}], \mathbb{Z}[\sqrt{3}], \mathbb{Z}[\sqrt{2}+\sqrt{3}], \mathbb{Z}[\sqrt{2}, \sqrt{3}] .
$$

Exercise 6. Let d be a squarefree integer. Show that the ring $\mathbb{Z}[\sqrt{d}]$ has Krull dimension 1, but need not be a PID. Indeed, show that all rings $\mathbb{Z}[\sqrt{d}]$ for squarefree $d \leq-3$ are not UFD's and hence not PID's.

Exercise 7-extra. Determine all integer solutions of the Diophantine equation $y^{2}=x^{3}-4$ by using properties of the ring $\mathbb{Z}[i]$.

Exercise 8. Let $\overline{\mathbb{Z}}$ be the integral closure of \mathbb{Z} in \mathbb{C}. Determine the Krull dimension of $\overline{\mathbb{Z}}$ and show that $\overline{\mathbb{Z}}$ is not a PID. Show that $\overline{\mathbb{Z}}$ has no irreducible elements and decide which of the elements $\frac{-1+\sqrt{3}}{2}, \frac{-1+\sqrt{-3}}{2}$ is in $\overline{\mathbb{Z}}$.

Exercise 9. Let $\alpha=\sqrt[3]{2}$ and $K=\mathbb{Q}, L=\mathbb{Q}(\alpha)$. Compute the trace $\operatorname{tr}_{L / K}(z)$ and the norm $N_{L / K}(z)$ of an arbitrary element $z=a+b \alpha+c \alpha^{2}$ in L. Find an integral basis $\left\{1, \xi_{1}, \xi_{2}\right\}$ of \mathcal{O}_{L} over \mathbb{Z} (without proof) and compute the discriminant $D\left(1, \xi_{1}, \xi_{2}\right)$ in at least two different ways.

Exercise 10. Let A be a Dedekind domain and I a nonzero ideal of A. Show that A / I is a product of principal ideal rings and I can be generated as an ideal by two elements.

Exercise 11. Let $R=\mathbb{Z}[\sqrt{-3}]$ and let I be a nonzero ideal of R. Define its norm by $N(I)=\#(R / I)$. Show that this norm is finite, but not multiplicative.

Exercise 12. Consider the following ideals in $\mathbb{Z}[\sqrt{-3}]$,

$$
P_{1}=(2), P_{2}=(3), P_{3}=(5), P_{4}=(1+\sqrt{-3}), P_{5}=(2,1+\sqrt{-3}) .
$$

Which of these ideals is a prime ideal? Conclude that the unique decomposition into prime ideals does not hold in $\mathbb{Z}[\sqrt{-3}]$, and that the ideal (2) has no decomposition into prime ideals.

Exercise 13. Let A be a Dedekind domain and let I and I^{\prime} be nonzero ideals. Then there exists an ideal J coprime to I^{\prime} such that $I J$ is principal.

Exercise 14- extra. Find without proof the imaginary quadratic number fields $\mathbb{Q}(\sqrt{-d})$ with minimal squarefree $d>0$ having class group \mathbb{Z} / n for each $1 \leq n \leq 9$. Can you find a prime $p \geq 3$ such that $(\mathbb{Z} / p)^{3}$ is the class group of an imaginary quadratic number field? What about $p=2$? Determine without proof all finite abelian groups of order $n \leq 100$, which do not arise as the class group of an imaginary quadratic number field.

Exercise 15. Let $A=\left(a_{i j}\right) \in M_{n}(\mathbb{R})$ and

$$
L_{i}\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} a_{i j} x_{j}
$$

be real linear forms for $1 \leq i \leq n$ with $\operatorname{det}(A) \neq 0$. Let c_{1}, \ldots, c_{n} be positive real numbers with $c_{1} \cdots c_{n}>|\operatorname{det}(A)|$. Show that there exists integers m_{1}, \ldots, m_{n}, not all zero, such that $\left|L_{i}\left(m_{1}, \ldots, m_{n}\right)\right|<c_{i}$ for all $1 \leq i \leq n$.

Exercise 16. Let $G=\mathbb{R} \cdot(1, \alpha)$ be a line in the plane \mathbb{R}^{2} with irrational slope $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. Use Exercise 15 to show that for any $\varepsilon>0$ there are infinitely many lattice points $P \in \mathbb{Z}^{2}$ with distance $d(P, G)<\varepsilon$.

Exercise 17. Determine all quadratic number fields $\mathbb{Q}(\sqrt{d})$ with a squarefree integer d, such that the Minkowski bound is less than 2, and compute this bound explicitly in these cases. Give an example of a number field K with class number 1, but Minkowski bound $B_{K}>2$.

Exercise 18. Determine all groups G which can arise as the group of roots of unity μ_{K} for a quartic number field K, i.e., with $[K: \mathbb{Q}]=4$. Give an example of such a field K having the given unit group in each case.

Exercise 19. Let K be a number field of degree n with $\mathcal{O}_{K}^{\times} \cong \mathbb{Z} \times \mu_{K}$. Determine all possible degrees $n \geq 1$ and the group μ_{K} in all cases.

Exercise 20. Let K / \mathbb{Q} be a cubic extension which is not Galois, with negative discriminant d. So it has only one real embedding. View K this way as a subfield of \mathbb{R}. Let $\varepsilon>1$ be a fundamental unit of K. Show that

$$
\frac{|d|}{4}<\varepsilon^{3}+7 .
$$

Exercise 21- extra. Let K be a cubic number field with exactly one real embedding. Use Hadamard's inequality to show that for any unit $u \in \mathcal{O}_{K}^{\times}$ with $u>1$ we have

$$
\left|D\left(1, u, u^{2}\right)\right| \leq 3\left(u^{2}+\frac{2}{u}\right)\left(u^{4}+\frac{2}{u^{2}}\right) .
$$

Compare this with the estimate $\left|D\left(1, u, u^{2}\right)\right|<4\left(u^{3}+\frac{1}{u^{3}}+6\right)<4\left(u^{3}+7\right)$ from Exercise 20.

Exercise 22. Show that $u=1+\sqrt[3]{2}+\sqrt[3]{4}$ is a fundamental unit of \mathcal{O}_{K}^{\times} for the number field $K=\mathbb{Q}(\sqrt[3]{2})$.

Exercise 23. Let $K=\mathbb{Q}(\sqrt{21})$. Show that $u=55+12 \sqrt{21}$ is a unit in \mathcal{O}_{K}^{\times}, but not a fundamental unit.

Exercise 24. Compute the class number of $\mathbb{Q}(\sqrt{-5})$ by using the analytic class number formula and the fact that $L(1, \chi)$, for an imaginary quadratic number field K with discriminant d_{K} and quadratic character $\chi(n)=\left(d_{K} / n\right)$, can be computed by

$$
L(1, \chi)=-\frac{\pi}{\left|d_{k}\right|^{3 / 2}} \sum_{r=1}^{\left|d_{k}\right|-1} \chi(r) r .
$$

Exercise 25. Give an example of number fields K and L and a prime number p such that p is inert in K / \mathbb{Q} and L / \mathbb{Q}, but not in the compositum $K L / \mathbb{Q}$.

Exercise 26. Let $K \subseteq E \subseteq L$ be a tower of number field extensions with intermediate field E. Let $\mathcal{O}_{K}, \mathcal{O}_{E}, \mathcal{O}_{L}$ be the corresponding rings of integers and \mathfrak{p} be a prime ideal in \mathcal{O}_{K}. Show that if \mathfrak{p} splits completely in L, then \mathfrak{p} also splits completely in E.

Exercise 27. Let p be a prime not dividing $n, K=\mathbb{Q}\left(\zeta_{n}\right)$ and \mathfrak{p} be a prime ideal in \mathcal{O}_{K} lying over p. Show that the residual degree $f=f(\mathfrak{p}, p)$ is exactly the order of the element $p \in(\mathbb{Z} / n)^{\times}$. In particular, p splits completely in $\mathbb{Q}\left(\zeta_{n}\right)$ if and only if $p \equiv 1 \bmod n$.

Exercise 28-Extra. Let $K=\mathbb{Q}\left(\zeta_{7}\right)$ and $F \subseteq K$ be the unique subfield with $[F: \mathbb{Q}]=3$. Describe which rational primes p are ramified, split or inert in F / \mathbb{Q} in terms of congruences of p modulo 7 .

Exercise 29. Let p be an odd prime and $L=\mathbb{Q}\left(\zeta_{p}\right)$. Show that the discriminant of L is given by

$$
d_{L}=(-1)^{\frac{(p-1)(p-2)}{2}} p^{p-2} .
$$

Use the result that $d_{K} \mid d_{L}$ for a tower of number fields $\mathbb{Q} \subseteq K \subseteq L$, to show that L contains a unique quadratic extension of \mathbb{Q}, namely

$$
K=\mathbb{Q}\left(\sqrt{(-1)^{\frac{p-1}{2}} p}\right) .
$$

Exercise 30. Show that every quadratic extension of \mathbb{Q} is contained in a cyclotomic extension. Find a Galois extension of \mathbb{Q} with non-abelian Galois group and conclude that it is not contained in a cyclotomic extension.

Exercise 31. Show that the equation $x^{2}=2$ has two solutions in \mathbb{Z}_{7}, the ring of 7 -adic integers, and compute its first ten 7 -adic digits.

Exercise 32. Let p be a prime number and a an integer coprime to p. Show that the sequence $a_{n}=a^{p^{n}}$ converges in \mathbb{Q}_{p} and determine its limit.

Exercise 33. Let p be an odd prime. Show that \mathbb{Q}_{p} has no p-th root of unity other than 1 , and that \mathbb{Q}_{2} has no 4 -th roots of unity other than ± 1.

Exercise 34. Show that the p-adic fields \mathbb{Q}_{p} are pairwise non-isomorphic for different primes $p \in \mathbb{P}$ and $p=\infty$ by considering roots of unity in these fields.

Exercise 35-Extra. Let $\mathbb{Z}[[X]]$ denote the ring of formal power series in one variable. Show that there is a ring isomorphism $\mathbb{Z}[[X]] /(X-p) \cong \mathbb{Z}_{p}$.

Exercise 36. Show that the p-adic series $\sum_{n=1}^{\infty} n \cdot n!$ and $\sum_{n=1}^{\infty} n^{2} \cdot(n+1)$! converge in \mathbb{Q}_{p} with

$$
\begin{aligned}
\sum_{n=1}^{\infty} n \cdot n! & =-1, \\
\sum_{n=1}^{\infty} n^{2} \cdot(n+1)! & =2
\end{aligned}
$$

whereas $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges in \mathbb{Q}_{p}.

Exercise 37. Let K be a field that is complete with respect to a nontrivial absolute value $|\cdot|$. Show that K is uncountable.

Exercise 38. Show that the equation $x^{2}-82 y^{2}=2$ has solutions in \mathbb{Z}_{p} for every prime p, and but has no solutions in \mathbb{Z}.

