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CHAPTER 1

Introduction

Homological algebra is a branch of mathematics devoted to the study of homology in a gen-
eral algebraic setting. Here “homology” is a general way of associating a sequence of algebraic
objects, such as abelian groups or modules, to other mathematical objects such as topological
spaces. Homology groups were originally defined in algebraic topology, but then have been
generalized to a wide variety of other contexts, such as abstract algebra, algebraic geometry,
algebraic number theory, representation theory, mathematical physics and other areas.
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CHAPTER 2

Rings and modules

Rings and modules are a prerequisite for areas such as commutative algebra, homological
algebra or number theory. Therefore we provide a chapter on it with basic definitions and
results.

2.1. Definition of ring and module

In commutative algebra we usually assume that a ring is commutative and has a unit. For
homological algebra we consider in addition to commutative rings also other rings like group
rings, which are not necessarily commutative.

Definition 2.1.1. A ring is an abelian group (R,+) together with a unit element 1 ∈ R
and an associative bilinear map R × R → R, (x, y) 7→ x · y such that 1 · x = x · 1 = x for all
x ∈ R and the distributive laws are satisfied.

Note that this definition excludes non-associative rings like Lie rings or Jordan rings. Recall
that a ring homomorphism ϕ : R→ S preserves the unit elements, i.e., it satisfies ϕ(1R) = 1S.
The most familiar ring is the ring of integers Z. It is called the initial ring in homological
algebra for the following reason.

Example 2.1.2. For every ring R, there is a unique ring homomorphism ϕ : Z→ R. This
says that the ring of integers is an initial object in the category of rings.

The zero ring R = {0} is the only ring with 1R = 0. It is called the terminal ring for the
following reason.

Example 2.1.3. For every ring R, there is a unique ring homomorphism ϕ : R→ 0, where
0 denotes the zero ring. This says that the zero ring is a terminal object in the category of
rings.

Of course we will give an exact definition for the category of rings lateron. Other typical
commutative rings are the fields Q,R,C, or the polynomial ring R[X] over a commutative ring
R, and the power series ring R[[X]].

Example 2.1.4. Let R be a commutative ring and G be a group. Then the group ring R[G]
is the ring of all finite sums

∑
g∈G rg[g] with rg ∈ R. The addition is defined by∑

g∈G

rg[g] +
∑
g∈G

sg[g] =
∑
g∈G

(rg + sg)[g],

and the multiplication by (∑
g∈G

rg[g]

)(∑
g∈G

sg[g]

)
=
∑
g∈G

∑
ab=g

rasb[g].

This arises from requiring [g][h] = [gh] and bilinearity over R.
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4 2. RINGS AND MODULES

Let G be the infinite cyclic group 〈t〉 = {tn | n ∈ Z} and R be a commutative ring. Then
R[G] is the ring R[t, t−1] of all Laurent polynomials

ant
n + an−1t

n−1 + · · ·+ a0 + a−1t
−1 + · · ·+ a−mt

−m.

Definition 2.1.5. Let R be a commutative ring and S be a ring. Then S is called an
R-algebra, if there is a ring homomorphism ϕ : R → S such that ϕ(r)s = sϕ(r) for all r ∈ R
and s ∈ S.

Vector spaces are defined over fields. The corresponding notion over a ring is called a
module. By definition we consider every module as a left module.

Definition 2.1.6. A left R-module is an abelian group (M,+) equipped with a bilinear
map µ : R×M →M satisfying

µ(1,m) = m,

µ(x, µ(y,m)) = µ(xy,m)

for all x, y ∈ R and m ∈M .

When the action µ is fixed, we usually just write x.m or xm for µ(x,m).

Example 2.1.7. Some basic examples of R-modules are the following.

1. Every vector space over a field K is a K-module.

2. Every abelian group is a Z-module.

3. Every ring is a module over itself, the action given by the ring multiplication.

Definition 2.1.8. Let M and N be modules over a ring R. Then an R-linear map f : M →
N is called an R-module homomorphism. So we have

f(x+ y) = f(x) + f(y),

f(r.x) = r.f(x)

for all x, y ∈ M and r ∈ R. We denote by HomR(M,N) the abelian group of all R-module
homomorphisms.

For a given ring (R, ·) the opposite ring Rop is defined by (R, ◦) with the same underlying
abelian group, but with reversed multiplication r ◦ s := s · r. When R is a commutative ring,
it coincides with its opposite ring. Otherwise R may not be isomorpic to Rop.

2.2. Actions on rings and modules

There are several ways to construct new rings and modules from given ones. Let I be an
index set, which may be finite or infinite.

Definition 2.2.1. Let R be a ring and Mi for i ∈ I be R-modules. Then the direct product∏
i∈IMi is the R-module {(mi) | i ∈ I} of tuples with componentwise addition and diagonal

multiplication r.(mi)i∈I = (r.mi)i∈I .

The direct sum
⊕

i∈IMi is defined as the subset of the (mi) from the direct product, for which
mi = 0 for almost all i ∈ I, i.e., for all but finitely many i ∈ I.
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The direct sum and direct product differ only for infinite indices, i.e., if I is infinite. There
are canonical R-module homomorphisms

Mi
ji−→
⊕
i∈I

Mi ⊆
∏
i∈I

Mi
pi−→Mi

given by inclusion of the i-th component and the projection to the i-th component. Note that
we can define the direct product of infinitely many rings as well, but not the direct sum, as it
would miss an identity element (1, 1, . . . , 1) with infinitely many 1’s. As we will see, the direct
product and the direct sum of modules are dual in the sense of category theory: the direct sum
is the coproduct, while the direct product is the product in the category of R-modules. We can
already be a bit more precise.

Lemma 2.2.2. The direct sum satisfies the universal property of a coproduct for R-modules.
This means, that we have a bijection, even an isomorphism of abelian groups

HomR

(⊕
i∈I

Mi, N

)
∼=
∏
i∈I

HomR(Mi, N),

where the bijective map is given by f 7→ (f ◦ ji)i∈I for f ∈ HomR

(⊕
i∈IMi, N

)
.

Proof. We show that f is bijective by constructing an inverse map, namely (fi)i∈I 7→∑
i∈I fi ◦ pi. Here the sum is finite, because only finitely many pi(m) are nonzero for m ∈⊕
i∈IMi. �

Similarly we have the following result for the product.

Lemma 2.2.3. The direct product satisfies the universal property of a product for R-modules.
This means, that we have a bijection, even an isomorphism of abelian groups

HomR

(
M,
∏
i∈I

Ni

)
∼=
∏
i∈I

HomR(M,Ni).

We have defined the tensor product of R-modules over a commutative ring R in [2]. We
will extend this here to rings, which are not necessarily commutative.

Definition 2.2.4. Let M be an Rop-module and N be an R-module. The tensor product
M ⊗R N is defined by the free abelian group generated by the pairs m ⊗ n for m ∈ N and
n ∈ N modulo the relations

0⊗ n = m⊗ 0 = 0(2.1)

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n(2.2)

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2(2.3)

(m.r)⊗ n = m⊗ (r.n)(2.4)

for all m,m1,m2 ∈M , n, n1, n2 ∈ N and r ∈ R.

The tensor product has the following properties.

Proposition 2.2.5. Let M,Mi be Rop-modules and N be an R-module. Let Q be an S-
module and P be an R-module, which is at the same time an Sop-module with (r.p).s = r.(p.s).
Then we have
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(1) M ⊗R R 'M and R⊗R N ' N .
(2)

(⊕
i∈IMi

)
⊗R N ∼=

⊕
i∈I(Mi ⊗R N).

(3) M ⊗R
(⊕

i∈I Ni

) ∼= ⊕i∈I(M ⊗R Ni).
(4) (M ⊗R P )⊗S Q ∼= M ⊗R (P ⊗S Q).

Proof. (1): This follows immediately from (2.4) of Definition 2.2.4.

(2): A morphism

Φ:
⊕
i∈I

(Mi ⊗R N)→

(⊕
i∈I

Mi

)
⊗R N

is by Lemma 2.2.2 uniquely determined by its restriction to each Mi, where we have Φ(mi⊗n) =
ji(mi) ⊗ n. The map is bijective, because we can easily specify an inverse map Ψ as follows.
Any element in

(⊕
i∈IMi

)
⊗R N is a sum of elements of the form

x =

(∑
i∈I

ji(mi)

)
⊗ n,

where mi ∈Mi and almost all mi = 0. The define Ψ by

Ψ(ji(mi)⊗ n) = ji(mi ⊗ n).

(3): This follows the same way as (2).

(4): With the assumptionsM⊗RP becomes an Sop-module via (m⊗p).s = m⊗(p.s), and P⊗SQ
becomes an R-module via r.(p⊗ q) = (r.p)⊗ q. Then the claimed associativity follows. �

Example 2.2.6. Let Rn = R⊕ · · · ⊕R be the free R-module of rank n. Then we have

Rm ⊗R Rn ∼= Rmn.

This follows directly from (2) respectively (3) of Proposition 2.2.5.

Example 2.2.7. The isomorphism (2) does not hold in general for the direct product, i.e.,(∏
i∈I

Mi

)
⊗R N 6∼=

∏
i∈I

(Mi ⊗R N).

Indeed, consider the Z-module M =
∏

n≥1 Z/n and the Z-module N = Q. Then we have
Mi ⊗R N = Z/n⊗Z Q = 0 for all i = n, because

k ⊗ q = (kn)⊗ q

n
= 0⊗ q

n
= 0.

Hence the right side is equal to zero. On the other hand, the element e ∈
∏

i∈IMi =
∏

n≥1 Z/n
having each coordinate equal to 1 is not a torsion element, i.e., no multiple of it is zero. So we
have

0 6= e⊗ 1 ∈

(∏
n≥1

Z/n

)
⊗Z Q =

(∏
i∈I

Mi

)
⊗R N.

In general, the tensor product M ⊗R N of two R-modules M and N is an abelian group. If R
is commutative, we can also equip it with an R-module structure.
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Lemma 2.2.8. Let R be a commutative ring and M,N be two R-modules. Then M ⊗R N
becomes an R-module via

r.(m⊗ n) = (r.m)⊗ n = m⊗ (r.n).

Furthermore HomR(M,N) becomes an R-module via (r.f)(m) = r.f(m).

Remark 2.2.9. The tensor product of R-modules satisfies the following universal property.
Let M be an Rop-module, N be an R-module and g : M ×N →M ⊗RN be given by g(x, y) =
x⊗ y. For every abelian group P and every R-bilinear map f : M ×N → P there is a unique
group homomorphism f̂ : M ⊗R N → P such that f̂ ◦ g = f , i.e., the following diagram
commutes:

M ×N
g

��

f // P

M ⊗R N
f̂

::

2.3. Free, projective, injective and flat modules

In this section we will discuss some important classes of R-modules.

Definition 2.3.1. An R-module is called free, if it contains a basis, i.e., if it is isomorphic
to
⊕

i∈I R for some index set I.

For R = Z free R-modules are just free abelian groups.

Example 2.3.2. The Z-module Q is not free.

To show this, assume that Q contains a basis {eα}α∈I over Z. Then we have

1

1
= n1eα1 + · · ·+ nreαr ,

for nonzero integers ni. Chose a nonzero n ∈ Z with n - n1. We also have

1

n
= m1eβ1 + · · ·+mseβs .

The equation n · 1
n

= 1
1

says that

nm1eβ1 + · · ·+ nmseβs = n1eα1 + · · ·+ nreαr .

However, because of the uniqueness of a basis representation, these two representations must
coincide. Hence nmi = n1 for some i. This is a contradiction to n - n1.

Definition 2.3.3. A sequence of R-modules and R-module homomorphisms

· · · f1−→M1
f0−→M0

f−1−−→M−1 · · ·
is called a sequence. It is called an R-chain complex, if fi ◦ fi+1 = 0 for all i ∈ Z, i.e., if
im(fi+1) ⊆ ker(fi) holds. It is called exact, if im(fi+1) = ker(fi) for all i ∈ Z.

We also say, a sequence is exact at a point Mi. For example, the sequence is exact at M1

if im(f1) = ker(f0). This says that image of the incoming map is the kernel of the outgoing
map. Of special interest in homological algebra are short exact sequences, which are just exact
sequences of the form

0→M ′ i−→M
p−→M ′′ → 0.
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The exactness at M ′ says that 0 = ker(i), so that i is injective. The exactness at M says that
M ′ = ker(p), and the exactness at M ′′ says that im(p) = M ′′, so that p is surjective.

Definition 2.3.4. A short exact sequence of R-modules

0→M ′ i−→M
p−→M ′′ → 0.

is called split, if M is isomorphic to M ′ ⊕M ′′.

Proposition 2.3.5. Let 0→M ′ i−→M
p−→M ′′ → 0 be a short exact sequence of R-modules.

Then then following statements are equivalent.

(1) i has a retraction, i.e., there exists a morphism π : M →M ′ such that π ◦ i = idM ′.

(2) p has a section, i.e., there exists a morphism s : M ′′ →M such that p ◦ s = idM ′′.

(3) We have M ∼= M ′ ⊕M ′′, so the sequence splits.

So if the short exact sequence is split then we have

M ∼= im(i)⊕ ker(π) ∼= ker(p)⊕ im(s).

Note that the result is not true for short exact sequences of groups.

Definition 2.3.6. An R-module M is called projective, if for every surjective R-module
homomorphism g : N1 → N2 and every R-module homomorphism γ : M → N2 there exists an
R-module homomorphism β : M → N1 such that γ = g ◦ β.

The definition can be made more transparent as follows. M is projective if for every diagram

M

}} ��
N1

// N2
// 0

with exact row there exists a lifting, such that the diagram commutes.

This avoids giving names for the mappings. The property says, in the slang of homological
algebra, that the map HomR(M,N1)→ HomR(M,N2), induced by the surjective mapN1 → N2,
is again surjective.

We have the following equivalent conditions for an R-module to be projective.

Proposition 2.3.7. Let M be an R-module. Then the following statements are equivalent.

(1) M is projective.

(2) There exists an R-module N such that M ⊕N is free.

(3) Every short exact sequence of R-modules

0→ N1 → N2 →M → 0

splits.
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(4) For every short exact sequence 0 → T ′ → T → T ′′ → 0 of R-modules the induced
sequence

0→ HomR(M,T ′)→ HomR(M,T )→ HomR(M,T ′′)→ 0

is also exact. We say that the functor HomR(M, ·) is exact.

Proof. (1) =⇒ (3): Let

0→ N1 → N2
g−→M → 0

be a short exact sequence of R-modules. Consider the diagram

M

β}}
id
��

N2 g
// M // 0

Since M is projective, there exists for the R-module homomorphism g : N2 →M an R-module
homomorphism β : M → N2 with g ◦ β = idM . This says, by using Proposition 2.3.5 that the
above sequence splits.

(3) =⇒ (2): For every R-module there is a free R-module F and a surjection F → M . For
example, we may take F =

⊕
m∈M R. So let N2 be such a free R-module with a surjection

N2
g−→M with kernel N1. Then we have a short exact sequence

0→ N1 → N2 →M → 0.

By assumption it splits, so that N2
∼= M ⊕N1, where N2 is free. So we have shown (2).

(2) =⇒ (4): Note that HomR(M, ·) is always left-exact, i.e., the sequence

0→ HomR(M,T ′)→ HomR(M,T )→ HomR(M,T ′′)

is alway exact. Then one just needs to show that the last map is surjective, if (2) is satisfied.
This is easy. But we will not use this here. We give a different argument. Condition (4) is
always satisfied for free R-modules M , because then HomR(M,N) =

∏
i∈I N , where I is the

index set of a basis for M . By assumption M ⊕N is free for some R-module N , so that

0→ HomR(M ⊕N, T ′)→ HomR(M ⊕N, T )→ HomR(M ⊕N, T ′′)→ 0

is exact. By Lemma 2.2.2, the universal property of a coproduct for R-modules, we have
HomR(M ⊕ N,S) ∼= HomR(M,S) × HomR(N, T ) for S = T, T ′, T ′′, and we obtain another
exact sequence this way. It gives the exactness of the sequence in (4), because the kernel
(respectively the image) of a product of maps equals the product of the kernels (the images) of
the single maps.

(4) =⇒ (1): Applying (4) with T ′′ = N2, T = N1 and T ′ = ker(N2 → N1) gives that the map

HomR(M,N1)→ HomR(M,N2)

induced by any surjective map N1 → N2 is again surjective. But this is just the definition of a
projective R-module. �

Corollary 2.3.8. Every free R-module is projective.

Proof. This follows immediately from Proposition 2.3.7, property (2). �

The converse need not be true.
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Example 2.3.9. Let R = R1 ⊕ R2 with non-trivial rings R1 and R2, and consider the R-
module M = R1 with action (r1, r2).m = r1m. Then M is a projective R-module, which is not
free.

Indeed, R is a free R-module and M = R1 is a direct summand of it, hence projective.
Clearly M is not free, because (0, r2).m = 0 for all r2 ∈ R2 and hence every m ∈M is linearly
dependent over R.

Remark 2.3.10. In the above example, the ring R is not an integral domain. However,
one can also find examples of projective, non-free R-modules over integral domains. A typical
example is the ring R = Z[

√
−5] and its ideal M = (2, 1 +

√
−5), considered as R-module. It

is not free since it is not principal and thus any two elements are linearly dependent over R. It
is projective since it represents the nontrivial element in the class group of Q(

√
−5), which is

isomorphic to Z/2.

On the other hand we have the following result.

Proposition 2.3.11. Let M be a projective R-module, where R is a PID. Then M is free.

Proof. As a projective module, M is a direct summand of a free module. In particular it
is a submodule of a free module and hence is free, because the ring is a PID. �

Hence over a PID, projective modules are just free modules. This is true in particular for
the ring R = Z. As an example, there is no nonzero finite abelian group G, which is a projective
Z-module. Indeed, G cannot be free, since it has torsion. No element g ∈ G can be part of a
basis because of |G|g = 0.

Definition 2.3.12. Let M be an R-module and 0→ N ′ → N → N ′′ → 0 be a short exact
sequence of R-modules. Then M is called flat, if the induced sequence

0→ N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM → 0

is exact. We say that the tensor product functor · ⊗RM is exact.

Here it is only relevant for flatness, that an injective map N ′ → N induces an injective
map N ′ ⊗R M → N ⊗R M , since the tensor product functor is generally right-exact for all
R-modules, i.e., the sequence

N ′ ⊗RM → N ⊗RM → N ′′ ⊗RM → 0

is always exact for all R-modules M .

Proposition 2.3.13. Let M be a projective R-module. Then M is flat.

Proof. Assume that N ′ → N is injective. By the distributivity of ⊗R and the fact, that M
is a direct summand of a free R-module we may assume that M is free. So we have M ∼=

⊕
i∈I R.

This yields, using distributivity again and N ⊗R R ∼= N for all R-modules N , that

N ′ ⊗RM
∼=
��

// N ⊗RM
∼=
��⊕

i∈I N
′ //

⊕
i∈I N

The lower map is of course injective if the map N ′ → N is injective. So we are done. �

The converse statement of the above proposition need not be true.
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Example 2.3.14. Show that the Z-module Q is flat, but not projective.

We already know that Q cannot be a projective Z-module, because then it would be free,
which contradicts Example 2.3.2.

Remark 2.3.15. One can show that every finitely presented flat R-module (that is the
quotient of a finitely generated free R-module by a finitely generated submodule) is always
projective. Over a Noetherian ring R, every finitely generated flat R-module is projective,
since every finitely generated R-module there is finitely presented.

Now we come to injective R-modules. The definition is dual to the one of a projective
R-module.

Definition 2.3.16. An R-module M is called injective, if for every injective R-module
homomorphism g : N1 → N2 and every R-module homomorphism γ : N1 → M there exists an
R-module homomorphism β : N2 →M such that γ = β ◦ g.

The short way to express this definition by a diagram is as follows. M is injective if for
every diagram

0 // N1

��

// N2

}}
M

with exact row there exists a lifting, such that the diagram commutes.

We obtain the following equivalent conditions for an R-module to be injective, which are proved
in the same way as for projective R-modules in Proposition 2.3.7.

Proposition 2.3.17. Let M be an R-module. Then the following statements are equivalent.

(1) M is in injective.

(2) Any R-module N containing M as a submodule has a submodule P such that N =
M ⊕ P .

(3) Every short exact sequence of R-modules

0→M → N1 → N2 → 0

splits.

(4) For every short exact sequence 0 → T ′ → T → T ′′ → 0 of R-modules the induced
sequence

0→ HomR(T ′′,M)→ HomR(T,M)→ HomR(T ′,M)→ 0

is also exact. We say that the functor HomR(·,M) is exact.

Trivially, the zero module {0} is injective. To provide more interesting examples we first
need Baer’s criterion.
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Theorem 2.3.18 (Baer’s criterion). Let R be a ring with unit. Then an R-module M is
injective if and only if for every ideal I in R and every R-module homomorphism f : I → M
there is an R-module homomorphism f : R→M extending f by f |I = f .

Proof. Suppose that M is an injective R-module and I is an ideal in R and f : I →M an
R-module homomorphism. Then we see from the diagram

0 // I

f
��

i // R

f~~
M

that the required map f exists by the definition of injectivity for M . Here i : I → R is the
inclusion homomorphism.

Conversely assume that M is an R-module such that the lifting property holds for all ideals
I of R. We need to show that if N2 is an R-module, N1 is a submodule and f : N1 → M is
an R-module homomorphism, then there exists an R-module homomorphism f : N2 →M such
that f |N1

= f . Let S be a set of all pairs (K, fK) such that

(1) K is a submodule of N2 such that N1 ⊆ K ⊆ N2.

(2) fK : K →M is an R-module homomorphism with (fK)|N1 = f .

Define a partial order on S as follows.

(K, fK) ≤ (K ′, fK′)⇐⇒ K ⊆ K ′ and (fK′)K = fK .

By Zorn’s Lemma there exists a maximal element (K0, fK0). We need to show that K ′ = N2.
Assume, by contradiction, that K ′ 6= N2, and let n ∈ N2 \K ′. Define

I := {r ∈ R | rn ∈ K0}.

This is an ideal of R and the map g : I → M , g(r) = fK0(rn) is an R-module homomorphism.
By the assumption on M there exists an R-module homomorphism g : R → M such that
g|I = g. Now K0 +Rn is a submodule of N2 and the map

f ′ : K0 +Rn→M, f ′(k0 + rn) = fK0(k) + g(r)

is a well defined homomorphism of R-modules such that f ′|N = f . This shows that (K0 +

Rn, f ′) ∈ S. Obviously we have

(K0, fK0) < (K0 +Rn, f ′),

which is a contradiction to the fact that (K0, fK0) is a maximal element. �

Corollary 2.3.19. Let R be an integral domain and let K be the field of fractions of R.
Then K is an injective R-module.

Proof. Let I be an ideal of R and let f : I → K be a homomorphism of R-modules. For
nonzero elements r, s ∈ I we have

rf(s) = f(rs) = sf(r).
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So we have f(r)
r

= f(s)
s

in K. Denote this element by x and define f : R→ K by f(r) = rx for

r ∈ R. Then f is an R-module homomorphism with f |I = f . By Baer’s criterion it folows that
K is an injective R-module. �

Example 2.3.20. The Z-module Q is injective.

Definition 2.3.21. An R-module M is called divisible if for every nonzero r ∈ R, which is
not a zerodivisor, and for every m ∈M there is an n ∈M such that rn = m.

For example, if R = Z, then Q, Q/Z and the Prüfer group Z(p∞), the subgroup of Q/Z
generated by the powers of 1/p, are divisible Z-modules. We have the following relationship
between injective and divisible R-modules.

Proposition 2.3.22. Let R be an integral domain. Then every injective R-module is di-
visible. Let R be a PID. Then every divisible R-module is injective.

Proof. Exercise. �

Example 2.3.23. Z is not an injective Z-module.

Indeed, Z is not divisible.

Corollary 2.3.24. Let R be a PID. Suppose that M is an injective and hence divisible
R-module, and that N a submodule of M . Then M/N is an injective and hence divisible R-
module.

Proof. If m + N ∈ M/N and r 6= 0 in R, then there exists m′ ∈ M such that m = rm′.
Hence m+N = rm′ +N = r(m′ +N). Therefore M/N is divisible. But then over a PID, any
module is divisible if and only if it is injective by Proposition 2.3.22 , so the claim follows. �

Corollary 2.3.25. The epimorphic image of a divisible Z-module is divisible.

Proof. Let ϕ : G → G′ be a surjective Z-module homomorphism, where G is a divisible
group, i.e., a divisible Z-module. Then G′ ∼= G/ ker(ϕ) is divisible by the previous corollary. �





CHAPTER 3

Categories and functors

3.1. Categories

We will briefly discuss the language of category theory.

Definition 3.1.1. A category C consists of a class ob(C) of objects and a class mor(C) of
morphisms, together with the following structural maps:

(i) An identity map i : ob(C) → mor(C), which asigns to each object A a morphism idA,
the identity morphism of A.

(ii) Two functions s, t : mor(C) → ob(C), which assign to every morphism its source (or
domain) and target (or codomain),

(iii) A composition map ◦ : mor(C) × mor(C) → mor(C), which assigns to any pair of
morphisms f, g such that t(f) = s(g) their composite morphism g ◦ f ,

such that the following axioms are satisfied:

(1) s(g◦f) = s(f) and t(g◦f) = t(g), i.e., source and target are respected by composition.

(2) s(idA) = A and t(idA) = A, i.e, source and target are respected by identities.

(3) (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever t(f) = s(g) and t(g) = s(h), i.e., composition is
associative whenever defined.

(4) If s(f) = A and t(f) = B, then idB ◦f = f = f ◦ idA, i.e., composition satisfies the
left and right unit laws.

The sets

HomC(A,B) = {f ∈ mor(C) | s(f) = A, t(f) = B}
= {f : A→ B}

are called homsets.

Example 3.1.2. 1. The category Set, with sets as objects and functions as morphisms.

2. The category Grp, with groups as objects and group homomorphisms as morphisms.

3. The category Vect, with vector spaces as objects and linear maps as morphisms.

15
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4. The category Top, with topological spaces as objects and continuous functions as morphisms.

5. The category Diff, with smooth manifolds as objects and smooth maps as morphisms.

6. The category Ring, with rings as objects and ring homomorphisms as morphisms.

7. The category ModR, with R-modules over a ring R as objects and R-module homomorphisms
as morphisms.

8. The category AlgR, with R-algebras as objects and R-algebra homomorphisms as mor-
phisms.

9. The category CRing, with commutative rings as objects and ring homomorphisms as mor-
phisms.

10. The category Aff, with affine schemes as objects and morphism of locally ringed spaces as
morphisms.

The first nine examples are clear, but for the last one we need some definitions.

A ringed space is a pair (X,OX), where X is a topological space and OX is a sheaf of rings on
X.

A morphism of ringed spaces from (X,OX) to (Y,OY ) is a pair (f, f#), where f : X → Y is a
morphism of topological spaces, and f# : OY → f∗OX is a morphism of sheafes of rings on Y .

A locally ringed space is a ringed space (X,OX), such that for each x ∈ X the stalk OX,x of OX

at x is a local ring. A morphism of local ringed spaces from (X,OX) to (Y,OY ) is a morphism
of ringed spaces (f, f#), such that for all x ∈ X the induced homomorphism of the local rings

f#
x : OY,f(x) → OX,x

is local, i.e., the image of the maximal ideal of OY,f(x) under f#
x lies in the maximal ideal of

OX,x. This defines the category LRs of locally ringed spaces.

For X = spec(R), the set of prime ideals of a commutative ring R with unit, we can consider
the Zariski topology together with the structure sheaf OX of rings, so that for all x ∈ X the
stalk OX,x is isomorphis to the local ring Rp, where p denotes the prime ideal in R, which
belongs to x ∈ X. Then (X,OX) is a locally ringed space. Now we can give the following
definition.

Definition 3.1.3. An affine scheme then is a locally ringed space (X,OX), which is iso-
morphic to (spec(R),Ospec(R) for a commutative ring with unit.

We will see later that the category Aff is “anti-equivalent” to the category CRing. First
we need some more definitions.

Definition 3.1.4. Let C be a category. A subcategory D consists of a subcollection of the
collection of objects of C and a subcollection of the collection of morphisms of D such that

(1) If the morphism f : A→ B is in D, then so are A and B.

(2) If f : A→ B and g : B → C are in D, then so is the composite g ◦ f : A→ C.

(3) If A is in D then so is the identity morphism idA.
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In addition D is a full subcategory if for any A and B in D, every morphism f : A→ B in C is
also in D.

These conditions ensure that D is a category in its own right and the inclusion D ↪→ C is
a functor. For example, the category Ab of abelian groups is a full subcategory of Grp. Here
is a table of some categories related to groups:

C Name
Grp Groups
Ab Abelian groups
Div Divisible abelian groups
Abf Free abelian groups
Cyc Cyclic groups
Abtf Torsion-free abelian groups
Abfg Finitely generated abelian groups
Abffg Finitely generated free abelian groups
grp Finite groups
ab Finite abelian groups
Abt Torsion abelian groups
Abp Profinite abelian groups

Definition 3.1.5. A functor F from a category C to a category D is a map sending each
object A ∈ C to an object F (A) ∈ D and each morphism f : A → B in C to a morphism
F (f) : F (A)→ F (B) in D, such that

(1) F (idA) = idF (A) for each A ∈ ob(C).
(2) F (g ◦ f) = F (g) ◦ F (f), i.e., F is covariant, or
(3) F (g ◦ f) = F (f) ◦ F (g), i.e., F is contravariant(F (f) : F (B)→ F (A)).

A contravariant functor is a covariant functor from the opposite category Cop (see below)
to D.

Example 3.1.6. 1. F : ModR → Ab, N 7→ HomR(M,N) is a functor, denoted by F =
HomR(M, ·) for a given R-module M .

2. F : ModR → ModR, N 7→ M ⊗R N is a functor, denoted by F = M ⊗R · for a given
R-module M over a commutative ring R.

3. U : ModR → Ab, N 7→ (N,+) is a functor, mapping N to its underlying abelian group.
Functors of this kind a called forgetful functors.

Proposition 3.1.7. Let R be a ring and M be a left R-module. Then F = HomR(M, ·) is
a covariant functor from ModR to Ab, und F = HomR(·,M) is a contravariant functor from
ModR to Ab.
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Proof. Let β : A → B be a morphism in ModR. We need to define F (β). Let M be a

fixed R-module. Consider the sequence M
α−→ A

β−→ B in ModR. Then define a homomorphism
β̃ = F (β) of abelian groups

F (β) : HomR(M,A)→ HomR(M,B)

by F (β)(α) = β̃(α) = β ◦ α. Obviously β = id in ModR implies F (β) = id in Ab. Given a
sequence

M
α−→ A

β−→ B
γ−→ C

in ModR, we obtain

F (γ ◦ β)(α) = (γ ◦ β)(α) = γ ◦ (β ◦ α)(3.1)

= F (γ)(F (β)(α)).(3.2)

Hence the functor F = HomR(M, ·) is covariant. The second claim follows similarly. �

Proposition 3.1.8. Let R be a commutative ring and M,N be two R-modules. Then both
F = M ⊗R · and G = · ⊗R N are covariant functors from ModR to ModR.

Proof. Given A
α−→ B

β−→ C in ModR we put

F (α) = 1M ⊗ α : M ⊗R A→M ⊗R B,

where (1M ⊗ α)(x⊗ y) = x⊗ α(y). Then

F (β ◦ α) = 1M ⊗ (β ◦ α) = (1M ⊗ β) ◦ (1M ⊗ α)(3.3)

= F (β)F (α).(3.4)

Hence F is covariant. The second claim follows similarly. �

Definition 3.1.9. Given categories C and D and a pair of functors F,G : C → D a natural
transformation N from F to G is an assigment N , which gives for every object C in C a
morphism N(C) : F (C) → G(C), so that for every morphism f ∈ HomC(C,C ′) the following
diagram commutes.

F (C)

F (f)

��

N(C)
// G(C)

G(f)

��
F (C ′)

N(C′)
// G(C ′)

Definition 3.1.10. An equivalence between two categories C and D is a pair of functors
F : C → D and G : D → C together with natural isomorphisms F ◦G ≡ idD and G ◦ F ≡ idC.
Here a natural isomorphism is a a natural transformation with a two-sided inverse.

Definition 3.1.11. For a category C, the opposite category Cop has the same objects as C,
but a morphism f : A→ B in Cop is the same as a morphism f : B → A in C, and a composite
of morphisms g ◦ f in Cop is defined to be the composite f ◦ g in C.

In general, the categories C and Cop need not be equivalent. However, the opposite of an
opposite category is the original category, i.e., (Cop)op = C.
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Example 3.1.12. 1. The category of affine schemes is equivalent to the opposite of the
category of commutative rings, i.e., Aff ∼= CRingop.

2. The Pontryagin duality restricts to an equivalence between the category of compact Hausdorff
abelian topological groups and the opposite of the category of abelian groups.

3. The category of profinite abelian groups is equivalent to the opposite of the category of torsion
abelian groups.

4. The category of vector spaces is self-dual, i.e., Vect ∼= Vectop. The same is true for the
category of finite-dimensional representations of a group (or of a Lie algebra).

Definition 3.1.13. Let C be a category, and X1, X2 two objects in C. A product of X1

and X2 is an object X, denoted X1 × X2, together with a pair of morphisms π1 : X → X1,
π2 : X → X2 that satisfy the following universal property. For every object Y and every pair of
morphisms f1 : Y → X1, f2 : Y → X2 there exists a unique morphism f : Y → X1 ×X2 such
that the following diagram commutes:

Y

f
��

f1

zz

f2

$$
X1 X1 ×X2π1
oo

π2
// X2

Example 3.1.14. 1. In the category of groups, the cartesian product X1×X2 with componen-
twise multiplication together with the canonical projections π1 : X1×X2 → X1, π2 : X1×X2 →
X2 is a categorial product for X1 and X2.

2. The category of cyclic groups does not have a product.

A coproduct in C is the same as a product in the opposite category Cop.

Definition 3.1.15. Let C be a category, and X1, X2 two objects in C. A coproduct of X1

and X2 is an object X, denoted X1qX2, together with a pair of morphisms i1 : X1 → X1qX2,
i2 : X2 → X1 qX2 that satisfy the following universal property. For every object Y and every
pair of morphisms f1 : X1 → Y , f2 : X2 → Y there exists a unique morphism f : X1qX2 → Y
such that the following diagram commutes:

Y

X1

f1

::

i1
// X1 qX2

f

OO

X2i2
oo

f2

dd

Example 3.1.16. 1. The coproduct in the category of groups is the free product. It is
infinite in general. For example, C2 ∗ C3

∼= PSL2(Z).

2. The coproduct in the category of commutative rings is the tensor product.

3. The category of cyclic groups does not have a coproduct.

Definition 3.1.17. Let C be a category. An initial object in C is an object X such that
for every object Y there is a unique morphism i : X → Y .

Example 3.1.18. 1. In the category of sets, the empty set is initial.

2. In the category of groups, the trivial group is initial.

3. In the category of R-modules, the zero module is initial.
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Definition 3.1.19. Let C be a category. An terminal object in C is an object Y such that
for every object X there is a unique morphism t : X → Y .

Example 3.1.20. 1. In the category of sets, any set containg one element is terminal.

2. In the category of groups, the trivial group is terminal.

3. In the category of R-modules, the zero module is terminal.

Definition 3.1.21. Let C be a category. A zero object in C is an object which is both
initial and terminal.

Example 3.1.22. 1. In the category of sets, there is no zero object.

2. In the category of groups, the trivial group is a zero object.

3. In the category of R-modules, the zero module is a zero object.

4. In the category of rings with unity, there is no zero object.

Definition 3.1.23. A category C is called pre-additive, if each homset is an additive abelian
group and composition is bilinear with respect to this addition:

(g + g′) ◦ (f + f ′) = g ◦ f + g ◦ f ′ + g′ ◦ f + g′ ◦ f ′

for all morphisms f, f ′ : A→ B, g, g′ : B → C.

Example 3.1.24. 1. The category of groups is not pre-additive (exercise).

2. The category of R-modules is pre-additive. In particular, for R = Z, the category of abelian
groups is pre-additive.

Definition 3.1.25. An additive category C is a pre-additive category with a zero object
and a product A×B for each pair of objects A,B from C.

One can show that this product is also a coproduct for finitely many objects, i.e., product
and coproduct are isomorphic.

Example 3.1.26. The category ModR ist additive with product and coproduct A1 ⊕ A2.

Here is a table with some examples and non-examples. For the definition of an abelian
category see below.
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C Additive Abelian
Set − −
Ring − −
AlgR − −
Hilb X −
Sh(X) X X
ModR X X
Grp − −
Ab X X
Div X −
Abf X −
Cyc − −
Abtf X −
Abfg X X
Abffg X −
grp − −
ab X X
Abt X X
Abp X X

Definition 3.1.27. A morphism i : A → B in an additive category C is called monic, if,
whenever g : A′ → A is a morphism satisfying i ◦ g = 0, then g = 0.

Monics can be cancelled from the left In Set, Grp and ModR, monics are just injective
maps.

Definition 3.1.28. A morphism e : C → D in an additive category C is called epi, if,
whenever h : D → D′ is a morphism satisfying h ◦ e = 0, then h = 0.

Epis can be cancelled from the right. In Set, Grp and ModR, epis are just surjective maps.
We define the kernel and the cokernel of a morphism as follows:

Definition 3.1.29. Let C be an additive category. Suppose that f : A→ B is an arbitrary
morphism in C. A kernel of f is a morphism κ : C → A such that

(a) f ◦ κ : C → B is the zero morphism:

A
f

��
C

κ

OO

0
// B
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(b) Given any morphism κ′ : D → A such that f ◦κ′ is the zero morphism, there is a unique
morphism g : D → C such that κ ◦ g = κ′:

A
f

��
C

κ

OO

0 // B

D
0

77κ′

GG

g

>>

Definition 3.1.30. Let C be an additive category. Suppose that f : A→ B is an arbitrary
morphism in C. A cokernel of f is a morphism λ : B → C such that

(a) λ ◦ f : A→ C is the zero morphism:

B

λ
��

A

f
??

0
// C

(b) Given any morphism λ′ : B → D such that λ′ ◦f is the zero morphism, there is a unique
morphism g : C → D such that g ◦ λ = λ′:

B

λ
��

λ′

��

A
0 //

f
??

0
''

C

g

  
D

It is easy to see that kernels and cokernels are universal and hence uniquely determined if
they exist (they need not exist in general).

Example 3.1.31. 1. In Grp, the usual definition of a kernel, with the inclusion map into A
satisfies the above universal property. So kernels always exist in Grp. A cokernel of a morphism
f : G → H in Grp is the quotient of H by the normal closure of the image of f . So cokernels
always exist.

2. In Ring, there is no zero object, so the kernel and the cokernel do not exist.

3. In ModR, kernels and cokernels always exist.

3.2. Abelian categories

Abelian categories are named after Niels Henrik Abel. They are the most important ones
for our lecture. The motivating prototypical example of an abelian category is the category of
abelian groups Ab, or more generally of R-modules ModR.

Definition 3.2.1. An abelian category is an additive category C satisfying the following
three conditions:

(AB1) Every morphism in C has a kernel and a cokernel.
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(AB2) Every monic morphism in C is the kernel of its cokernel, i.e.,

i = ker(coker(i)).

(AB3) Every epi(c) morphism in C is the cokernel of its kernel, i.e.,

e = coker(ker(e)).

The notion of abelian category is self-dual, i.e., the opposite category of any abelian category
is abelian.

Example 3.2.2. 1. ModR is an abelian category. In particular, Ab is an abelian category.

2. The category Abf of free abelian groups is additive, but not abelian (exercise). In fact, not
every morphism has a cokernel.

3. The category Div of divisible abelian groups is additive, but not abelian (exercise).

Remark 3.2.3. Not every abelian category is a concrete category such as ModR or Ab.
But for many proofs in homological algebra it is very convenient to have a concrete abelian
category, for that allows one to check the behaviour of morphisms on actual elements of the sets
underlying the objects. However, under good conditions an abelian category can be embedded
into Ab as a full subcategory by an exact functor, and generally can be embedded this way
into ModR, for some ring R. This is the Freyd-Mitchell embedding theorem.

Definition 3.2.4. Let C be an additive category. A sequence 0 → A → B
α−→ C is called

left-exact if the sequence of abelian groups

0→ Hom(T,A)→ Hom(T,B)→ Hom(T,C)

is exact for all objects T in C. A sequence A
β−→ B → C → 0 is right-exact if the sequence of

abelian groups

0→ Hom(C, T )→ Hom(B, T )→ Hom(A, T )

is exact for all objects T .

Definition 3.2.5. A covariant functor F : C → D of additive categories is called exact, if
it takes short exact sequences in C to short exact sequences in D. That means, given a short
exact sequence

0→M1 →M2 →M3 → 0

in C yields a short exact sequence

0→ F (M1)→ F (M2)→ F (M3)→ 0

in D.
The functor is called left-exact, if

0→ F (M1)→ F (M2)→ F (M3)

is exact. It is called right-exact, if

F (M1)→ F (M2)→ F (M3)→ 0

is exact.
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The definition for contravariant functors is analogous. One has to reverse the arrows in D.
Hence a contravariant functor F is left-exact if every exact sequence

0→M1 →M2 →M3

is taken to an exact sequence

0→ F (M3)→ F (M2)→ F (M1).

Proposition 3.2.6. The contravariant functor HomR(·, V ) from ModR to Ab is left-exact,
as well as the covariant functor HomR(V, ·).

Proof. We only show that HomR(V, ·) is a left-exact functor. In general, it is not an exact
functor. So let

0→M1
ψ−→M2

ϕ−→M3

be a short exact sequence of R-modules. We have to show that the sequence

0→ HomR(V,M1)
ψ̃−→ HomR(V,M2)

ϕ̃−→ HomR(V,M3)

is exact. Let ψ̃σ = 0 for σ ∈ HomR(V,M1). This means ψ(σ(v)) = 0 for all v ∈ V . We have

σ(v) = 0, because ψ is injective, and hence σ = 0. This implies that also ψ̃ is injective.
Now let ϕ̃τ = 0 with τ ∈ HomR(V,M2). Then ϕ(τ(v)) = 0 for all v ∈ V , and τ(v) = ψ(v′) with
some v′ ∈ M1, depending on v. Since ψ is injective, v′ is unique. Define τ ′ ∈ HomR(V,M1) by
this v′, i.e., let τ ′(v) = v′. Then it follows that

τ(v) = ψ(v′) = ψ(τ ′(v)) = (ψ̃τ ′)(v).

Hence τ is contained in the image of ψ̃. �

Remark 3.2.7. Let R be a commutative ring. The covariant functors F = M ⊗R · and
G = · ⊗R N are right-exact, but not exact in general.



CHAPTER 4

Resolutions and derived functors

In this chapter we will use the language of abelian categories. It is useful to think of the
category of R-modules as a main example instead.

4.1. Projective and injective resolutions

Definition 4.1.1. Let C be an abelian category. An object I of C is injective if Hom(·, I)
is an exact functor, i.e., if 0→ A→ B → C → 0 is exact in C then also

0→ Hom(C, I)→ Hom(B, I)→ Hom(A, I)→ 0

is exact.

This sequence is automatically exact except at Hom(A, I). Hence to say that I is injective
means that every homomorphism A → I extends to B, i.e., for each injection f : A → B and
each α : A→ I there exists at least one map β : B → I such that α = β ◦ f .

Definition 4.1.2. Let C be an abelian category. We say that C has enough injectives if
for every object A in C there is an injection A→ I where I is injective.

We have the following result.

Theorem 4.1.3. Every R-module can be embedded into an injective R-module, i.e., the
category ModR has enough injectives.

Proof. See [8]. �

Let C be an abelian category. Then Cop is also abelian and injective objects in C correspond
to so called projective objects in Cop. We have the following dual definition.

Definition 4.1.4. Let C be an abelian category. An object P of C is projective if Hom(P, ·)
is an exact functor, i.e., if 0→ A→ B → C → 0 is exact in C then also

0→ Hom(P,A)→ Hom(P,B)→ Hom(P,C)→ 0

is exact.

Indeed, A is injective in C if and only if A is projective in Cop.

Example 4.1.5. Consider the category of all complex vector spaces. Then each object is
projective and injective.

Indeed, every module in this category is free, since it has a basis, and hence projective.

Example 4.1.6. The category of finite abelian groups ab is an example of an abelian category
that has no nonzero projective objects. Since ab is equivalent to abop it has also no nonzero
injective objects.

25



26 4. RESOLUTIONS AND DERIVED FUNCTORS

Since Z is a PID, a finitely generated projective Z-module is free. But a nonzero finite
abelian group cannot be free. On the other hand, an injective module over an integral domain
is divisible. Again, a nonzero finite abelian group is not divisible.

Definition 4.1.7. Let C be an abelian category. We say that C has enough projectives if
for every object A in C there is a surjection P → A where P is projective.

Proposition 4.1.8. The category ModR has enough projectives.

Proof. Every R-module is the homomorphic image of a free, hence projective R-module.
�

Example 4.1.9. The category Abfg of finitely generated abelian groups has enough projec-
tives, but not enough injectives.

The free group on a finite generating system maps surjectively onto a given finitely generated
abelian group. On the other hand, there are no nonzero finitely generated abelian injective
groups, because injective means divisible here. So Abfg has no nonzero injectives at all.

Definition 4.1.10. Let M be an object of an abelian category C. A projective resolution
of M is a long exact sequence

· · · → Pr → Pr−1 → · · · → P1 → P0 →M → 0,

also written as P• →M → 0, where all Pr are projective objects in C.

An injective resolution of M is a long exact sequence

0→M → I0 → I1 → · · · → Ir → · · · ,
also written as 0→M → I•, where all Ir are injective objects of C.

Proposition 4.1.11. If the abelian category C has enough projectives, then every object
in C has an projective resolution. If the abelian category C has enough injectives, then every
object in C has an injective resolution.

Proof. We will prove the first claim. The second one then follows by dualizing. Let M be
an object in C. Since C has enough projectives, there is a projective object P0 such that there
is a surjection P0 → M → 0. Let K0 = ker(P0 → M). This object may not be projective,
but we can find again a surjection P1 → K0 → 0, where P1 is surjective. This yields an exact
sequence P1 → P0 →M → 0. By iterating we obtain a projective resolution of M . �

4.2. Homology and homotopy

Let C be an abelian category and consider all chain complexes in an abelian category. They
form a category ChC by taking ladders of morphisms in C as morphisms, which are commutative
diagrams

· · ·
dn+1 // Cn+1

fn+1

��

dn // Cn

fn
��

dn−1 // Cn−1

fn−1

��

dn−2 // · · ·

· · ·
dn+1 // Dn+1

dn // Dn

dn−1 // Dn−1
dn−2 // · · ·

Here we have dn ◦ dn+1 = 0 for all n, which is often just written as d2 = 0. An object in ChC

then is just denoted by a pair (C•, d•). Note that the category ChC is again abelian.
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Definition 4.2.1. Let (C•, d•) ∈ ChC . Denote by Zi(C•, d•) = ker(di−1) the i-cycles and
by Bi(C•, d•) = im(di) the i-boundaries.

Because we have im(di) ⊆ ker(di−1) for all i, the i-boundaries are a subobject of the i-
cycles. In other words, the monomorphism Bi(C•, d•) → Ci factorizes by a monomorphism
Bi(C•, d•)→ Zi(C•, d•).

Definition 4.2.2. The homology of a complex (C•, d•) is defined by the quotient

Hi(C•, d•) = Zi(C•, d•)/Bi(C•, d•) = ker(di−1)/ im(di).

A chain complex (C•, d•) is called acyclic in case that Hi(C•, d•) = 0 for all i ≥ 1.

Remark 4.2.3. 1. For every n ∈ Z the natural assignment Hn : ChC → C is a functor,
because it maps kernels of d to kernels of d, and images of d to images of d.

2. Let P• → 0 be a projective resolution of an object M in C. Then the complex C• = P• → 0
is acyclic. Note that

H0(C•, d•) = P0/ im(P1 → P0) = P0/ ker(P0 →M) ∼= M.

3. Let C• be a chain complex ending with → C1 → C0 → 0. We say that it is concentrated
in non-negative degrees. Then H0(C•) = C0/ im(C1 → C0) and there is a surjective morphism
C0 → H0(C•), so that

· · · → Cn → Cn−1 → · · · → C0 → H0(C•)→ 0

is a complex. This complex is exact if and only if the chain complex C• is acyclic.

4. A complex is exact if and only if its homology vanishes in all degrees. So homology measures
the deviation to being exact.

By dualizing homology one can obtain cohomology. Instead of reversing all arrows and so
on, one can also just define the cochains by Ci = C−i. Then the definition of cohomology is as
follows.

Definition 4.2.4. The cohomology of a complex (C•, d•) is defined by

H i(C•, d•) := H−i(C•, d•)

for all i.

We now return to morphisms of chain complexes.

Definition 4.2.5. A morphism of chain complexes f• : C• → D• is called a quasi-isomorphism
of chain complexes, if it induces in each degree n an isomorphism Hn(f) : Hn(C•)→ Hn(D•).

A quasi-isomorphism of chain complexes need not be an isomorphism of chain complexes.

Example 4.2.6. Consider the following map f• : C• → D• in Ab of chain complexes, given
by

· · · // 0

f2
��

// Z
f1
��

×2 // Z
f0
��

// 0

f−1

��

// · · ·

· · · // 0 // 0 // Z/2 // 0 // · · ·
This is not an isomorphism of chain complexes, but it induces one in homology.

Indeed, we have H0(C•) = H0(D•) ∼= Z/2 and Hi(C•) = Hi(D•) = 0 for all i 6= 0.
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Definition 4.2.7. Let f, g : C• → D• be two chain maps. A sequence of maps hn : Cn−1 →
Dn satisfying f − g = h ◦ d + d ◦ h is called a chain homotopy of g to f . We say then that f
and g are chain-homotopic and write f ' g.

More precisely we have

(f − g)n = fn − gn = hn ◦ dn−1 + dn ◦ hn+1

for all n in the diagram (which no longer commutes)

· · ·
dn+1 // Cn+1

(f−g)n+1

��

dn //

hn+2

}}

Cn

(f−g)n

��

dn−1 //

hn+1

}}

Cn−1

(f−g)n−1

��

dn−2 //

hn

}}

· · ·

hn−1

}}
· · ·

dn+1 // Dn+1
dn // Dn

dn−1 // Dn−1
dn−2 // · · ·

Definition 4.2.8. Let f : C• → D• and g : D• → C• be chain maps such that f ◦ g ' idD•
and g ◦ f ' idC• . Then we call C• and D• homotopy-equivalent and write C• ' D•.

Note that a chain homotopy from g to f is not a chain map in general. This is only true
for f = g.

Proposition 4.2.9. Homotopic chain maps f ' g induce equal maps on homology. In
particular, homotopy equivalences of chain complexes induce isomorphisms of the induced ho-
mologies.

Proof. The second statement follows immediately from the first by Definition 4.2.8. Let h
be a homotopy between f and g. We have to show that h = h ◦ d+ d ◦ h induces the zero map
in homology. Restricting hn to the cycles we have h|ker(d) = d ◦ h. So we have h|ker(d) ⊆ im(d),

and hence h∗ = 0. �

4.3. The fundamental theorem of homological algebra

The following theorem, sometimes called fundamental lemma, is very useful for almost all
of homological algebra.

Theorem 4.3.1. Let f : M → N be a morphism in an abelian category, P• → M → 0 be
a chain complex with projective objects Pi, and N• → N → 0 be an arbitrary exact sequence.
Then there exists a lifting of f to a morphism of chain complexes f• : P• → N•. Each two such
liftings f• and f ′• are chain-homotopic.

Proof. Since P0 is projective there is a lifting of f ◦ d to P0 → N0 such that the diagram
below commutes:

P0
d //

��

M

f
��

N0
// N // 0

The lifting need not be unique, though. Let M ′ = ker(P0 → M) be the kernel of d and
N ′ = ker(N0 → N). Consider the restriction to M ′ of the map P0 → M0. If x ∈ ker(d) = M ′
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then d ◦ f)(x) = f(dx) = f(0) = 0. Thus by restriction we obtain a map f ′ : M ′ → N ′, such
that the lower row is again exact in the diagram

P1
//

��

M ′

f ′

��
N1

// N ′ // 0

Since P1 is again projective we obtain a morphism P1 → N1 in the same way as before. By
interating we find a lifting over the complete resolution, and the first part is proved.

For the second part it is enough to show that every lifting f• of the zero map M
0−→ M is

homotopic to the zero map on the chain complex, i.e., that there exists a chain homotopy h
such that f = h ◦ d+ d ◦ h. Consider the ladder diagram

P1
d // P0

d //

f0
��

M

0
��

N1
d // N0

d // N // 0

Since d ◦ f0 = 0 ◦ d = 0 we may view f0 as a morphism P0 → ker(N0 → N). Because N• is
exact, the morphism N1 → ker(N0 → N) is surjective. Since P0 is projective we obtain a lifting

P0

f0
��

h0

xx
N1

// ker(N0 → N) // 0

such that d ◦ h0 = f0. We can now apply the previous argument to f1 − h0 ◦ d to obtain the
diagram

P1
d //

h1

~~
f1
��

P0

f0
��

h0

||
N2

d // N1
d // ker(d) // 0

where in the square only the lower triangle commutes. But we have

d ◦ (f1 − h0 ◦ d) = d ◦ f1 − f0 ◦ d = 0.

Thus f1 − h0 ◦ d lifts to a map h1 to N2, so that d ◦ h1 + h0 ◦ d = f1. It follows that we can
finish the proof by interating this procedure. �

Corollary 4.3.2. Each two projective resolutions of an object in C are chain homotopy-
equivalent.

Proof. Let P• and P ′• be two projective resolutions of an object M in C. By Theorem
4.3.1 we can lift idM to morphisms of chain complexes f : P• → P ′• and f ′ : P ′• → P•. Then f ◦f ′
is a lifting of idM to an endomorphism of the chain complex P ′•. Another lifting of idM is also
given by the identity in each degree. By Theorem 4.3.1, these two liftings are chain-homotopic.
Hence f, f ′ represent a chain homotopy equivalence. �

Let F be an additive functor F : C → D between two abelian categories, and N• be a chain
complex in ChC. Then we obtain a chain complex F (N•) by termwise application of F using
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the additivity of F . However, if N• is exact, F (N•) need no longer be exact, because the functor
may not be exact.

Definition 4.3.3. Let F be an additive functor F : C → D between two abelian categories.

1. If C has enough projectives, then the left derived functors LnF : C → D are given by

(LnF )(X) := Hn(F (P•)),

where P• → X is an arbitrary projective resolution of X.

2. If C has enough injectives, then the right derived functors RnF : C → D are given by

(RnF )(X) := Hn(F (I•)),

where X → I• is an arbitrary injective resolution of X.

Remark 4.3.4. 1. If F is exact, then the derived functors vanish.

2. The derived functors are well-defined. Indeed, if P• and P ′• are two different projective
resolutions of an object X in C, then there exists by Corollary 4.3.2 a chain homotopy equiv-
alence P• ' P ′•. Its image under F yields a chain homotopy equivalence F (P•) ' F (P ′•). By
Proposition 4.2.9 the homology groups are isomorphic. The same follows for the right derived
functors with injective resolutions.

3. The derived functors are really functors, i.e., they are also defined on morphisms. Indeed,
if f : X → Y is a morphism, then f can be lifted uniquely, up to homotopy, to a morphism
f• : P• → Q• of projective resolutions P• and Q•. This yields a morphism F (f•) : F (P•) →
F (Q•) of chain complexes, which induces a morphism F (f•)∗ on the homology. By Proposition
4.2.9 this morphism doesn’t depend on the choice of f•.

Lemma 4.3.5. Let F be a right exact functor. Then we have L0F = F . If F is left exact,
then R0F = F . In particular, if F is exact, then L0F = R0F = F .

Proof. It is enough to show the first part here. Let P• → X be a projective resolution of
X. Since F is right exact, the sequence

F (P1)→ F (P0)→ F (X)→ 0

is exact. By the homomorphism theorem we obtain

F (X) ∼= F (P0)/(ker(F (P0)→ F (X)) ∼= F (P0)/ im(F (P1)) = H0(F (P•)).

�

It makes sense to consider left derived functors now only for right exact functors and right
derived functors only for left exact functors.

4.4. The long exact sequence in homology

We know that if the functor F is exact, then the derived functors LnF and RnF vanish. If
F is not exact, the derived functors may be nonzero. In order to study them we will derive a
long exact sequence of derived functors. We start with a lemma which is called snake lemma,
because of a curved, snake-like arrow in the diagram.
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Lemma 4.4.1. Let C be an abelian category and consider the following commutative diagram
in C with exact rows

M ′ i //

f ′

��

M

f
��

j // M ′′ //

f ′′

��

0

0 // N ′
i′ // N

j′ // N ′′

Then there is an exact sequence

ker(f ′)→ ker(f)→ ker(f ′′)
∂−→ coker(f ′)→ coker(f)→ coker(f ′′).

If M ′ → M is a monomorphism, so is ker(f ′) → ker(f), and if N → N ′′ is an epimorphism,
so is coker(f)→ coker(f ′′).

Proof. Consider the following extended diagram, which shows the snake:

ker(f ′) ker(f) ker(f ′′)

M ′ M M ′′ 0

0 N ′ N N ′′

coker (f ′) coker (f) coker (f ′′)

i j

i

f ′

j

f f ′′

i′ j′

∂

∂

i′ j′

We may assume that C is an abelian category of modules over a ring R. We prove this result
by diagram chasing.

1. The construction of ∂: Let m′′ ∈ ker(f ′′). Since j : M → M ′′ is surjective, there exists a
preimage m0 ∈M . By the exactness at M , every other preimage has the form m = m0 + i(m′)
for m′ ∈M ′. Now f(m0) is mapped under j′ : N → N ′′ to zero, since j′(f(m0)) = f ′′(j(m0)) =
f ′′(m′′) = 0. Now there is a unique n′0 ∈ N ′ such that i′(n0) = f(m0) because of the exactness
of the N -row. More generally, starting with the preimage m = m0 + i(m′) for m′ ∈ M ′, the
element n0 is replaced by n′0 + f ′(m′) with i′(n0 + i(m′)) = f(m). In other words, the class [n′0]
of n0 is well-defined up to an image under f ′, hence well-defined in coker(f ′). So we can define

∂ : ker(f ′′)→ coker(f ′), m′′ 7→ ∂(m′′) := [n′0].

By construction, ∂ is a module homomorphism.

2. Exactness at ker(f): We have j ◦ i = 0, so that j ◦ i = 0, which says that im(i) ⊆ ker(j).
Conversely let x ∈ ker(j), i.e., j(x) = 0. Since x ∈M we have x = i(u) for some u ∈M ′. Then
using i′ ◦ f ′ = f ◦ i,

i′(f ′(u)) = f(i(u)) = f(x) = 0.

By the injectivity of i′ we obtain f ′(u) = 0, hence u ∈ ker(f ′), and thus x = i(v) for some
v ∈ ker(f ′), i.e., x ∈ im(i). So ker(j) ⊆ im(i).

3. Exactness at ker(f ′′): Let m ∈ ker(f) and m′′ = j(m). Then ∂(m′′) = 0 because of
f(m) = 0. This yields ∂ ◦ j = 0, or im(j) ⊆ ker(∂). Conversely let x ∈ ker(f) be given with
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x ∈ ker(∂). We need to find a preimage in ker(f). By the exactness of the upper row we find
a preimage m ∈ M , which may not yet lie in ker(f). But f(m) has a preimage n′ ∈ N ′, since
j′(f(m)) = 0 ∈ N ′′. Since we have ∂(m′′) = 0 there exists a preimage m′ ∈ M of n′, i.e., we
have f ′(m′) = n′. Let m0 = i(m′) ∈ M . We claim that the difference d := m−m0 ∈ M is the
required preimage, which also lies in ker(f). Indeed, we have

f(d) = f(m− i(m′)) = f(m)− (f ◦ i)(m′)
= f(m)− (i′ ◦ f ′)(m′)
= f(m)− i′(n′)
= f(m)− f(m) = 0.

4. Exactness at coker(f ′) and coker(f): This follows by passing to the opposite category from
above. �

Let C be an abelian category. Then ChC is again an abelian category. So we know what a
short exact sequence of chain complexes

0→M ′
• →M• →M ′′

• → 0

means. In particular we have then a short exact sequence 0→M ′
n →Mn →M ′′

n → 0 for each
n.

Proposition 4.4.2. Let 0 → M ′
• → M• → M ′′

• → 0 be a short exact sequence of chain
complexes in C. Then there exists a long exact sequence

· · ·Hi(M
′
•)→ Hi(M•)→ Hi(M

′′
• )

∂−→ Hi−1(M
′
•)→ Hi−1(M•)→ · · ·

in homology.

Proof. We assume again that C is a subcategory of ModR. Consider the commutative
diagram

0 // M ′
n

//

d
��

Mn

d

��

// M ′′
n

//

d
��

0

0 // M ′
n−1

// Mn−1 // M ′′
n−1

// 0

and apply the snake lemma to it. Because the kernel of d equals the cycles and the image of d
equals the boundaries, we obtain a long exact sequence

0→ Zn(M ′
•)→ Zn(M•)→ Zn(M ′′

• )

→M ′
n−1/Bn−1(M

′
•)→Mn−1/Bn−1(M•)→M ′′

n−1/Bn−1(M
′′
• )→ 0

Therefore the rows are exact in the following commutative diagram

M ′
n/Bn(M ′

•) //

d
��

Mn/Bn(M•)

d
��

// M ′′
n/Bn(M ′′

• ) //

d
��

0

0 // Zn−1(M
′
•) // Zn−1(M•) // Zn−1(M

′′
• )

So we can apply the snake lemma again. This yields the long exact sequence in homology. �

As a consequence we can prove the following result.
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Proposition 4.4.3. Let C be an abelian category with enough injectives, D an arbitrary
abelian category and F : C → D be a left exact additive functor. Let

0→M ′ i−→M
p−→M ′′ → 0

be a short exact sequence in C. Then there is a long exact sequence in D

0→ (R0F )(M ′)→ · · · → (RiF )(M ′)
i∗−→ (RiF )(M)

p∗−→ (RiF )(M ′′)

∂−→ (Ri+1F )(M ′)
i∗−→ (Ri+1F )(M)

p∗−→ (Ri+1F )(M ′′)
∂−→ · · ·

If C has enough projectives, and the functor F is right exact, then there is a long exact sequence

· · · → (LiF )(M ′)
i∗−→ (LiF )(M)

p∗−→ (LiF )(M ′′)
∂−→ (Li−1F )(M ′)

i∗−→ (Li−1F )(M)
p∗−→ (Li−1F )(M ′′)

∂−→ · · · → (L0F )(M ′′)→ 0

The homomorphism ∂ is called connecting homomorphisms.

Proof. It is enough to prove one of the two statements, since they are dual to each other.
To compute the derived functors we need to construct projective resolutions of P ′• → M ′,
P• →M and P ′′• →M ′′. Then we want to apply Proposition 4.4.2 to them. But for this these
resolutions also need to form a short exact sequence of chain complexes 0→ P ′• → P• → P ′′• →
0. In other words, the following diagram needs to be commutative:

P ′n //

d′��

Pn

d��

// P ′′n

d′′��
...

��

...

��

...

��
P ′0 //

ε′

��

P0
//

ε

��

P ′′0

ε′′

��
0 // M ′ i // M // M ′′ // 0

To construct this, we chose two arbitrary projective resolutions P ′• → M ′ and P ′′• → M ′′ and
construct the third one by Pi := P ′i ⊕ P ′′i , taking as differential d = d′ ⊕ d′′ the direct sum
of the other two differentials. Then P• is an exact complex consisting of projective objects.
The horizontal arrows are given by the canonical injections P ′i → P ′i ⊕ P ′′i and the canonical
surjections P ′i ⊕ P ′′i → P ′′i . The maps ε′ and ε′′ are the augmentations of the projective
resolutions ofM ′ respectivelyM ′′. Then we can define the map ε : P ′0⊕P ′′0 →M componentwise.
The first component is i ◦ ε′ : P ′0 → M . For the second component we note that M → M ′′ is
surjective, so that we can use the projectivity of P ′′0 to lift ε′′ to a morphism P ′′0 → M . This
finishes the construction and we can apply Proposition 4.4.2 to obtain the result. �

4.5. The functors Tor and Ext

The most important derived functors are the derived functors of the tensor product functor
and of the Hom-functor.

Definition 4.5.1. Let R be a ring and X be a right R-module. Let

FX : ModR →Ab
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be the right exact functor given by FX(Y ) = X ⊗R Y . Its left derived functors are denoted by

TorRn (X, Y ) = (LnFX)(Y ).

Note that we have TorR0 (X, Y ) = X⊗RY . If eitherX or Y is flat, then we have TorRn (X, Y ) =
0 for all n ≥ 1. In fact, one can compute Tor using a flat resolution of either X or Y . This is
more general than a projective (or free) resolution.

Definition 4.5.2. Let R be a ring and X be a left R-module. Let

FX : (ModR)op →Ab

be the left exact functor given by FX(Y ) = HomR(Y,X). Its right derived functors are denoted
by

ExtnR(Y,X) = (RnFX)(Y ).

Note that a injective resolution in (ModR)op, as used in Ext, is the same as a projective
resolution in ModR. Both functors Tor and Ext are also functors in the other variable. We
have Ext0R(Y,X) = HomR(Y,X). If Y is projective, or if X is injective, then ExtnR(Y,X) = 0
for all n ≥ 1.

Example 4.5.3. We have

TorZk (Z/m,Z/n) =

{
Z/gcd(n,m) for k = 0, 1,

0 otherwise.

This is an exercise. The same holds for ExtkZ(Z/m,Z/n).

Example 4.5.4. We have

TorZk (Z,Z/n) =

{
Z⊗Z Z/n ∼= Z/n for k = 0,

0 otherwise.

Indeed, since Z is projective and hence flat, TorZk (Z, H) = 0 for all k ≥ 1 and all Z-
modules H. The functor Tor1 vanishes on finitely generated abelian groups A if and only if A
is torisonfree, i.e.,

TorZ1 (A, ·) = 0⇐⇒ A is torsionfree ⇐⇒ TorZ1 (·, A) = 0

This explains the name Tor, comming from torsion.

Example 4.5.5. We have ExtnZ(X, Y ) = 0 for all abelian groups X, Y and all n ≥ 2.

We can use a projective resolution of X to compute the right derived functors of Hom(−, Y ),
which is a contravariant left exact functor. So take

0← F ← A← 0

where F is in degree 0. Applying Hom(·, Y ) to this projective resolution, we get a cochain
complex

0→ Hom(F, Y )→ Hom(A, Y )→ 0

where Hom(F, Y ) is in degree 0. Now the group Extn(X, Y ) is the n-th cohomology group of
this complex. But since the complex is 0 in degrees ≥ 2, this means Extn(X, Y ) = 0 for all
n ≥ 2.

Remark 4.5.6. Note that Ext1Z(X, Y ) need not be zero, e.g., for X = Y = Z/p for a prime
p.
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4.6. Double complexes

Let C be an abelian category. A double complex or bicomplex is a generalization of a chain
complex.

Definition 4.6.1. A double complex is a triple (Xi,j, dh, dv) consisting of objects Xi,j

in C and morphisms dh : Xi,j → Xi−1,j and dv : Xi,j → Xi,j−1, the horizontal and vertical
differentials, such that

dhdv = −dvdh, d2h = d2v = 0.

The sum i+ j is called the total degree of Xi,j.

The equation dhdv = −dvdh says that the following squares are anticommutative in a bi-
complex

Xi,j
dh //

dv
��

Xi−1,j

dv
��

Xi,j−1
dh // Xi−1,j−1

and not commutative. Some readers will probably prefer that these squares commute. But then
one can replace dv by a suitble d′v such that dhd

′
v = d′vdh (and the resulting categories become

equivalent). Define a morphism between two double complexes by a family of morphisms
fi,j : Xi,j → Yi,j commuting with the differentials dh and dv, i.e., satisfying

dhf = fdh, dvf = fdv.

Definition 4.6.2. The double complexes (Xi,j, dh, dv) together with their morphisms form
a category, which is denoted by bChC.

The category bChC is again abelian.

Definition 4.6.3. We can associate to every double complex (Xi,j, dh, dv) two ordinary
complexes |X| and Tot(X) by

|X••|n :=
∐
i+j=n

Xi,j, (Tot(X••))n =
∏
i+j=n

Xi,j,

where the differential in both cases is given by d = dh + dv. Both complexes are called total
complex of X.

We need to verify that |X| and Tot(X) are really chain complexes. Indeed, for every x ∈ Xi,j

we have

d2(x) = d(dh(x) + dv(x))

= (dhdh)(x) + (dhdv)(x) + (dvdh)(x) + (dvdv)(x) = 0.

Definition 4.6.4. Let (P•, d) be an Rop-chain complex and (Q•, d) be an R-chain complex.
Define a bicomplex (P ⊗R Q)•• of Z-modules by

(P ⊗R Q)i,j := Pi ⊗R Qj,

where the differentials are given by

dh(p⊗ q) = d(p)⊗ q, dv(p⊗ q) = (−1)ip⊗ d(q)

for p ∈ Pi and q ∈ Qj. The integer i is called the degree of p and is denoted by |p| = i.
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Definition 4.6.5. Let (P•, d) be anR-chain complex. Define a Z-double complex HomR(P,Q)••
by

HomR(P,Q)i,j := HomR(Pi, Qj),

where the differentials are given by

(dhf)(p) = f(d(p)), (dvf)(p) = (−1)|f |+1d(f(p))

for f : Pi → Qj and p ∈ P . Here |f | is the degree of f .

We can now define a different Tor functor, using the associated total complex of the tensor
double complex as follows.

Definition 4.6.6. Let P• → X be a projective resolution of Rop-modules and Q• → Y bne
a projective resolution of R-modules. Then define the functor Tor by

Tor
R

n (X, Y ) := Hn(|P ⊗R Q|).

We want to show that Tor and Tor coincide. For this, we need the following lemma.

Lemma 4.6.7. Let X•• be a double complex in an abelian category C. Suppose that the row
complex X•,j is exact for every j ∈ Z. Then the following statements hold.

1. If there exists a N ∈ Z such that Xi,j = 0 for all rows j < N , then the total complex |X| is
exact.

2. If there exists a N ∈ Z such that Xi,j = 0 for all columns i < N , then the total complex
Tot(X) is exact.

Proof. (1): We may assume that N = 0. Otherwise we move the complex vertically. It
is enough to show the exactness at |X|0, because we can move an arbitrary total degree to the
total degree 0 by shifting the complex X horizontally. We have

|X|0 =
⊕
n∈Z

X−n,n =
⊕
n≥0

X−n,n.

Let x = (xn0 , xn0−1, . . . , x0) ∈ |X|0 be an arbitrary element with xn ∈ X−n,n, and let d(x) = 0.
Because of dh(xn) ∈ X−n−1,n and dv(xn) ∈ X−n,n−1 we have

dh(xn0) = 0,

dv(x0) = 0,

dv(xi) = −dh(xi−1) for 1 ≤ i ≤ n0 in X−i,i−1

Since the rows are exact, there exist elements yn ∈ X−n+1,n such that

dh(yn0) = xn0 ,

dh(yi) = xi − dv(yi+1) for 0 ≤ i ≤ n0 − 1,

because we have, using dh(yi+1) = xi+1 − dv(yi+2) and dh(xi) + dv(xi+1) = 0, that

dh(xi − dv(yi+1)) = dh(xi)− dh(dv(yi+1))

= dh(xi) + dv(dh(yi+1))

= dh(xi) + dv(xi+1 − dv(yi+2))

= dh(xi) + dv(xi+1)− d2v(yi+2) = 0.
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Hence we have found an element y = (yn0 , . . . , y0) ∈ |X|1 with d(y) = x. So the total complex
is exact at |X|0 and we are done.

(2): The proof is similar. �

We can now prove the claimed result concerning the two Tor functors.

Proposition 4.6.8. Let X be a right R-module and Y a left R-module. Then we have

TorRn (X, Y ) = Tor
R

n (X, Y ).

Proof. Let P• → X and Q• → Y be projective resolutions. Denote by P• the augmented
complex with Pn = Pn for n ≥ 0 and P−1 = X. Then P • is exact. Also the double complex
P⊗RQ is exact in each row, since Qi is projective for each i. By Lemma 4.6.7 the total complex
|P ⊗R Q| is exact. Obviously

0→ X[−1]→ P • → P• → 0

is a short exact sequence of complexes, where X[−1] denotes the complex having the module X
in degree −1 and the zero module otherwise. Since Qi is projective, tensoring with Q• yields an
exact sequence of double complexes. The functor |·| mapping double complexes to complexes
is exact, so that we obtain a short exact sequence of total complexes

0→ |X[−1]⊗R Q| → |P ⊗R Q| → |P ⊗R Q| → 0.

Since the complex |P ⊗R Q| is exact, the associated long exact sequence for n ≥ 0 splits into
pieces, which come from the connecting homomorphism

0→ Hn(|P ⊗R Q|)→ Hn+1(|X[−1]⊗R Q)| → 0.

So these two homology groups are always isomorphic for all n ≥ 0. By definition we have

Hn(|P ⊗R Q|) = Tor
R

n (X, Y ),

and for the second group we have

Hn+1(|X[−1]⊗R Q)| = Hn(X ⊗R Y ) ∼= TorRn (X, Y ).

So both Tor functors yield isomorphic groups. �

Note that if R is commutative, then also TorRn (X, Y ) = TorRn (Y,X). We also note, without
proof, a corresponding result for Ext functors. Let Y → I• be an injective resolution, and
P• → X be a projective resolution. Define

Ẽxt
n

R(X, Y ) := Hn(HomR(X, I•)), Ext
n

R(X, Y ) := Hn(Tot(HomR(P•, I•))).

Proposition 4.6.9. Let X and Y be R-modules. Then we have

ExtnR(X, Y ) ∼= Ẽxt
n

R(X, Y ) ∼= Ext
n

R(X, Y ).

4.7. The Yoneda Ext functor

Nobuo Yoneda defined the abelian groups Extn(M,N) for objects M and N in any abelian
category C. This agrees with the definition in terms of resolutions if C has enough projectives
or enough injectives. Moreover it shows where the name Ext comes from in this context, namely
from extensions. So let C be an arbitrary abelian category. For n ≥ 1 consider the set of exact
sequences

Extn(M,N) := {0→ N → Xn−1 → Xn−2 → · · · → X0 →M → 0}/ ∼
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modulo the equivalence relation E ∼ E ′ on the exact sequences if and only if there is a ladder
map E → E ′, which is the identity on the M - and N -entries. We want to show how to obtain
a functor Extn : Cop×C → Set, (M,N) 7→ Extn(M,N) from the above definition. We write as
a short hand

E = (0→ N → X• →M → 0) ∈ Extn(M,N).

Let f : M ′ →M and g : N → N ′ be morphisms and define the complexes

f ∗E : 0→ N → Xn−1 → · · · → X1 → X0 ×M M ′ →M ′ → 0

g∗E : 0→ N ′ → Xn−1 tN N ′ → Xn−2 → · · · → X0 →M → 0,

where X0 ×M M ′ → M ′ denotes the pullback under M , and N ′ → Xn−1 tN N ′ the pushout
under N . The pullback diagram for f is given by

X1

0

''

d

��

$$
X0 ×M M ′ //

��

M ′

f

��
X0

d // M

The morphism X1 → X0 → M is from the exact sequence and hence is zero. The pushout
diagram for g is dual to the pullback.

Lemma 4.7.1. The complexes f ∗E and g∗E are exact. Their equivalence class doesn’t depend
on the choice of a representative for an equivalence class in Extn. We obtain a functor F =
Extn.

Proof. We have maps

Extn(M ′, N)→ Extn(M,N), E 7→ f ∗E

Extn(M,N)→ Extn(M,N ′), E 7→ g∗E.

1. To show that f ∗E and g∗E are well-defined, we need to show that f ∗, respectively g∗, doesn’t
depend on the representative E of the equivalence class. It is enough to consider f ∗ and then
it follows for g∗ by duality. So let

E : 0 // N //

id
��

X•

��

// M //

id
��

0

E ′ : 0 // N // X ′• // M // 0

be an elementary equivalence of exact sequences and f : M ′ → M be a morphism. The func-
toriality of the pullback yields a map X0 ×M M ′ → X ′0 ×M M ′, which together with the other
morphisms Xi → X ′i yields an elementary equivalence between f ∗E and f ∗E ′.

2. The sequence f ∗E is exact. To see this, start with the map X0 ×M M ′ → M ′. It is sur-
jective, because for m′ ∈ M ′ we can find an x ∈ X0 with f(m′) = d(x), since d : X0 → M is
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surjective. Next, the morphism X1 → X0 ×M M ′ is given by x 7→ (d(x), 0), and because of
0 = d(d(x)) = f(0) this really lies in X0 ×M M ′. So we have

ker(X1 → X0 ×M M ′) = ker(X1 → X0) = im(X2 → X1).

Finally ker(X0 ×M M ′ → M ′) contains the elements of X0 ×M M ′, which are of the form
(x, 0). For those we have d(x) = f(0) = 0. Because E is exact, x ∈ im(X1 → X0) and hence
(x, 0) ∈ im(X1 → X0 ×M M ′). So f ∗E is exact. By duality it also follows that g∗E is exact.

3. Functoriality: let M2
f1−→ M1

f0−→ M0 be two morphisms. Then we need to show that
(f0f1)

∗ = f ∗1 f
∗
0 . But this follows form the canonical isomorphism

(X0 ×M0 M1)×M1 M2
∼= X0 ×M0 M2.

4. For f : M ′ → M and g : N → N ′ we need to show that f ∗g∗ = g∗f
∗. This is clear for all

n ≥ 2 since then the both functors act on different parts of the exact sequence. For n = 1
however, we have the diagram

N

d
��

g

}}

0

!!
N ′

0 !!

X

d
��

M ′

f}}
M

inducing the isomorphism

(X ×M M ′) tN N ′ ∼= (X tN N ′)×N M ′.

This can be verified elementwise. The isomorphism then induces an equivalence of the sequences
f ∗g∗E and g∗f

∗E. �

The next step is to equip the Yoneda sets Extn with the structure of an abelian group. Let
E,E ′ ∈ Extn(M,N) For n ≥ 2 consider the pullback diagram

X1 ⊕X ′1
d◦π2

((

d◦π1

!!

%%
X0 ×M X ′0 //

��

X ′0

d

��
X0

d // M

together with its dual pushout diagram. Then define the sum E + E ′, the Baer sum, as

E + E ′ : 0→ N → Xn−1 tN X ′n−1 → Xn−2 ⊕X ′n−2 → · · ·
→ X1 ⊕X ′1 → X0 ×M X ′0 →M → 0.

For n = 1 we have to change the middle term of E + E ′ to

{(x, x′) ∈ X ⊕X ′ | d(x) = d(x′)}/ ∼,
where the equivalence is given by (d(a), 0) ∼ (0, d(a)) for all a ∈ N .
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Lemma 4.7.2. The Yoneda sets Extn(M,N) are abelian groups with the above sum E +E ′.

Proof. We will not prove every detail. First note that we have to show that the complexes
E + E ′ are exact. This is clear at the middle direct sum terms. The exactness at M is given
by surjectivity. For given m ∈ M we find an x0 ∈ X0 and an x′0 ∈ X ′0 with d(x0) = m, using
the surjectivity of the extensions E and E ′. Then (x0, x

′
0) is the required preimage. To see the

exactness at X0 ×M X ′0 note that the kernel in X0 ×M X ′0 is given by

ker(X0 →M)×M ker(X ′0 →M) = im(X1 ⊕X ′1 → X0 ×M X ′0).

The exactness at N and at Xn−1 tN X ′n−1 follows by duality.

The neutral element is given, for n ≥ 2, by

0→ N
id−→ N → 0→ · · · →M

id−→M → 0,

and by the splitting short exact sequence for n = 1. Commutativity and associativity is clear,
and the existence of an inverse is left as an exercise. �

Denote now by Extn the Yoneda functor, and by ExtnC the usual Ext functor in an (abelian)
category C.

Proposition 4.7.3. Let C be an abelian category with enough projectives. Then there is
an isomorphism of functors Extn ∼= ExtnC.

Proof. Let P• → M be a projective resolution of M , and E ∈ Extn(M,N). By the
fundamental lemma 4.3.1 the lifting problem for idM ,

· · ·
dn+1 // Pn+1

fn+1

��

dn // Pn

fn
��

dn−1 // Pn−1

fn−1

��

dn−2 // Pn−2

fn−2

��

// · · · // P0
//

f0
��

M //

id
��

0

E : 0 // N // Xn−1 // Xn−2 // · · · // X0
// M // 0

has a solution f•. We have fn ◦ d = 0 by the commutativity of the left square. So we have

fn ∈ ker
(
Hom(Pn, N)→ Hom(Pn+1, N)

)
and we can define the class

Φ(E) := [fn] ∈ ExtnC(M,N).

This is indeed well-defined. It doesn’t depend on the choice of the lifting f• of idM , and on
the choice of the extension E in its equivalence class. By the fundamental lemma the lifting
fn : Pn → N is unique up to homotopy. So every other solution is of the form fn +H ◦d, where
H : Pn−1 → N is part of a chain homotopy. This makes no difference in the homology, so the
class of fn in Hn(Hom(P•, N) = ExtnC(M,N) is well-defined, if we can also show the second
condition, namely that it is invariant under the equivalence relation in Extn. So let E → E ′ be
an elementary equivalence, then we can chose such a lifting P• → E ′, which is the composition
of the lifiting of idM and the equivalence map E → E ′. Since this map by definition is idN , we
obtain the same element in ExtnC.

Now we want to show that the map

Φ: Extn(M,N)→ ExtnC(M,N)
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is an isomorphism of abelian groups. We define an inverse map Ψ as follows. Let f : Pn → N
be a representative in ExtnC(M,N). The by considering the pushout diagram

Pn

f

��

d // Pn−1

�� d

��

N //

0
,,

N tPn Pn−1

%%
Pn−2

we obtain an exact sequence

0→ N → N tPn Pn−1 → Pn−2 → · · · → P0 →M → 0

in Extn(M,N). It is clear that Φ ◦ Ψ = id. Conversely we have Ψ ◦ Φ = id by the following
diagram

0 // N

id
��

// N tPn Pn−1

(d,fn−1)

��

// Pn−2

fn−2

��

// · · · // P0
//

f0
��

M //

id
��

0

0 // N
d // Xn−1

d // Xn−2 // · · · // X0
// M // 0

which gives an equivalence in Extn. Finally the bijection Φ is a group homomorphism, which
is easy to verify. �

Example 4.7.4. We have

Ext1(Z/p,Z/p) ∼= Ext1Ab(Z/p,Z/p) = Ext1Z(Z/p,Z/p) ∼= Zp.
Hence there are p equivalence classes of group extensions G of Z/p by Z/p

0→ Z/p→ G→ Z/p→ 0.

More generally, Ext1(Z/m,Z/n) ∼= Z/d, where d = gcd(m,n).

The Yoneda functor allows us to define a product of extensions, the so-called Yoneda product.
For E ∈ Extn(M,N) and E ′ ∈ Extm(Q,M) this will be an element EE ′ in Extn+m(Q,N)
for all n,m ≥ 1. Consider the morphism given by composition X0 → M → X ′m−1. Since
X1 → X0 → M is the zero map, and M → X ′m → X ′m−1 is the zero map, we obtain an
extension

0→ N → Xn−1 → · · · → X0 → X ′m−1 → · · · → X ′0 → Q

in Extn+m(Q,N). We can also define the product for n = 0 or m = 0. Let Ext0(M,N) =
Hom(M,N), then the product Ext0 × Ext0 → Ext0 is just the composition of morphisms. For
n or m nonzero we define the product by

Ext0 × Extm → Extm, (f, E) 7→ f ∗E,

Extn × Ext0 → Extn, (g, E) 7→ g∗E.

This is the Yoneda product, and it is a well-defined bilinear, associative multiplication.





CHAPTER 5

Homology and cohomology of groups

There are at least two different definitions of (co)homology groups. One by means of
(co)chains and explicit formulas of the (co)boundary operators, the other by means of derived
functors. Of course there is a canonical isomorphism between the two (co)homology groups.

5.1. Functorial definition of group homology and cohomology

For the definition of homology and cohomology of groups we are not using the category of
groups. Rather we use the category ModR for the group ring R = Z[G].

Definition 5.1.1. Let G be a group. A G-module M is an R-module for R = Z[G].

More explicitly M is an abelian group together with a linear G-action

T : G→ Aut(M)

given by T (g)(m) = g.m for all m ∈ M . Here T is a group homomorphism, and we have a
group action G ×M → M given by (g,m) 7→ g.m. The trivial action of G on M is given by
g.m = m for all g ∈ G, m ∈M .

Definition 5.1.2. Let G be a group. Denote by MG the category of G-modules, i.e., of
Z[G]-modules. This is an abelian category.

For the trivial group G = 1 we obtain the category Ab of Z-modules.

Definition 5.1.3. Let M be a G-module. Then the G-submodule

MG = {m ∈M | g.m = m for all g ∈ G}
is called the module of G-invariants. The G-submodule

MG = M/(g.m−m | g ∈ G,m ∈M) = M/IGM

is called the module of G-coinvariants. Here IG is the kernel of the augmentation map ε : Z[G]→
Z.

Lemma 5.1.4. The maps F,G : MG → Ab given by F (M) = MG and G(M) = MG are
additive functors.

Proof. Let f : M → N be a Z[G]-module homomorphism, which is a G-equivariant map.
We write f ∈ HomG(M,N) or sometimes f ∈ HomZ[G](M,N). Then f restricts to a morphism
fG : MG → NG. It also induces a morphism fG : MG → NG because of f(g.m−m) = g.f(m)−
f(m) �

Lemma 5.1.5. Let Z be a trivial G-module. Then we have

MG ∼= HomG(Z,M), MG
∼= Z⊗Z[G] M.

In particular, the functor F : MG → Ab with F (M) = MG is left exact, and the functor
G : MG →Ab with G(M) = MG is right exact.

43
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Proof. Let f ∈ HomG(Z,M). Then f is uniquely determined by f(1). Because of g.f(1) =
f(1.g) = f(1) we have f(1) ∈ MG. Conversely every m ∈ MG defines an f with f(1) = m by
g.m = m. This gives the first isomorphism. For the second one, note that in Z⊗Z[G]M we have

1⊗ (g.m−m) = (1.g)⊗m− 1⊗m = 0,

so that 1 ⊗m and 1 ⊗m′ are equal if and only if m and m′ determine the same class in MG.
Clearly the Hom functor is left exact and the tensor product functor is right exact. �

Since the category MG has enough injectives and projectives, we can form the right derived
functors RnF of the invariants and the left derived functors LnG of the coinvariants. So we
can define the (co)homology as follows.

Definition 5.1.6. Let M be a G-module. Then the homology of G with coefficients in M
is defined by

Hn(G,M) = (LnG)(M) = TorZ[G]
n (Z,M)

The cohomology of G with coefficients in M is defined by

Hn(G,M) = (RnF )(M) = ExtnZ[G](Z,M)

For the trivial G-module M = Z we write Hn(G) = Hn(G,Z) respectively Hn(G,Z) =
Hn(G). Although the definition of homology and cohomology appears to be symmetric, the
properties are quite different. It turns out that group cohomology is often easier to handle
and more useful than group homology. For example, group cohomology comes equipped with
a natural cup-product. Therefore we will prefer cohomology groups to homology groups a bit.
We recall a few basic properties of cohomology groups.

(1) We have H0(G,M) = F (M) = MG.

(2) If I is an injective G-module, then Hr(G, I) = 0 for all r > 0, because 0 → I → I →
0→ 0→ · · · is an injective resolution of I.

(3) A short exact sequence 0→ N →M → V → 0 of G-modules gives rise to a long exact
sequence

0→ H0(G,N)→ H0(G,M)→ H0(G, V )→ H1(G,N)→ H1(G,M)→ · · ·
→ Hr(G,N)→ Hr(G,M)→ Hr(G, V )→ Hr+1(G,N)→ · · ·

For the homology, we already have computed the case in Exercise 30, where G = Cn = 〈t〉 is
cyclic of order n and Z[G] ∼= Z[t]/(tn − 1).

Example 5.1.7. The homology of the cyclic group Cn with trivial coefficients is given by

Hk(Cn) = Tor
Z[G]
k (Z,Z) =


Z for k = 0,

Z/n for k odd,

0 for k > 0 even.

For the cohomology we obtain a similar result, see Exercise 34.
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Example 5.1.8. The cohomology of the cyclic group Cn with trivial coefficients is given by

Hk(Cn) = ExtkZ[G](Z,Z) =


Z for k = 0,

0 for k odd,

Z/n for k > 0 even.

With sage one can compute a few more examples, see

https://sagecell.sagemath.org/

Using spectral sequences we also can show that

Example 5.1.9.

Hn(S3,Z) =


Z , for n = 0

Z2 for n ≡ 2 mod 4,

Z6 for n > 0, n ≡ 0 mod 4,

0 for n odd.

Example 5.1.10. The group SL2(Z) is the amalgamated free product

SL2(Z) ∼= Z/4 ∗Z/2 Z/6.

Its homology and cohomology with trivial coefficients is given by

Hk(SL2(Z)) =


Z for k = 0,

Z/12 for k odd,

0 for k > 0 even.

Hk(SL2(Z)) =


Z for k = 0,

0 for k odd,

Z/12 for k > 0 even.

Note that SL2(Z) contains a free group of index 12, which is a reason, why 12 is arising
here.

Proposition 5.1.11. Let Fn be the free group of rank n. Then we have

Hk(Fn) ∼= Hk(Fn) =


Z for k = 0,

Zn for k = 1,

0 for k ≥ 2.

Proof. Let G be the free group Fn of rank n. We can show that there is a length one res-
olution of the trivial G-module Z as follows. Let ε : Z[G] −→ Z be the canonical augmentation
that sends every g ∈ G 7→ 1 ∈ Z, and let K = ker ε. Then K is a free Z[G]-module with basis
{x− 1 : x ∈ X} where X is a basis of G, so there is a free resolution of length 1,

0 −→ K −→ Z[G] −→ Z −→ 0

Thus Hk(Fn,Z) = Hk(Fn,Z) = 0 for all k ≥ 2. For k = 0 it is clear that we obtain the
invariants respectively the coinvariants, and the case k = 1 is left as an exercise. �
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5.2. The bar resolution

Among the resolutions of a Z[G]-module for computing homology or cohomology there
is a concrete one, which is functorial. This is useful for low degrees, but it becomes quite
complicated for the explicit computation in general. First we treat the version for homology.

Definition 5.2.1. Let R be a ring and M be an R-module. Define the bar complex
B•(R,M) by

Bn(R,M) = R⊗(n+1) ⊗M = R⊗Z · · · ⊗Z R⊗Z M,

together with the maps d : Bn(R,M)→ Bn−1(R,M) with d =
∑n

i=0(−1)idi, where

di(r0 | · · · | rn+1) = r0 | · · · | riri+1 | · · · | rn+1.

for ri ∈ R with i ≤ n and rn+1 ∈M .

The notation a | b := a ⊗ b has historical reasons and gives the complex its name. The
group Bn(R,M) is equipped with an R-module structure by

r.(r0 | · · · | rn | m) = r.r0 | r1 | · · · | rn | m.
Proposition 5.2.2. The sequence B•(R,M) is a resolution of M over R.

Proof. We will first show that d2 = 0, so that B•(R,M) is a complex. Using

di ◦ dj = dj ◦ di+1 for all i ≥ j

in the third line and splitting up the sum in the second line, we obtain

d ◦ d =
n−1∑
i=0

n∑
j=0

(−1)i+jdi ◦ dj

=
n−1∑
i=0

i∑
j=0

(−1)i+jdi ◦ dj +
n−1∑
i=0

n∑
j=i+1

(−1)i+jdi ◦ dj

=
n∑
i=1

i−1∑
j=0

(−1)i+j−1dj ◦ di +
n−1∑
i=0

n∑
j=i+1

(−1)i+jdi ◦ dj

=
n−1∑
j=0

n∑
i=j+1

(−1)i+j−1dj ◦ di +
n−1∑
i=0

n∑
j=i+1

(−1)i+jdi ◦ dj

= 0.

It remains to show that B•(R,M) is exact. This will follow from the construction of a chain
contraction (chain homotopy) h : Bn(R,M)→ Bn+1(R,M) satisfying

h ◦ d+ d ◦ h = id .

In fact, let
h(r0 | · · · | rn) = 1 | r0 · · · | rn.

Then one verifies that h ◦ di = di+1 ◦ h, so that

d ◦ h+ h ◦ d =
n+1∑
i=0

(−1)idi ◦ h+
n∑
i=0

(−1)ih ◦ di

= d0 ◦ h = id .

�
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Remark 5.2.3. The R-module Bn(R,M) need not be projective in general. For example,
if R = Z and M = Z/m, then Bn(R,M) = Z/m. However, if R and M are free as abelian
groups, so is Bn(R,M).

We can apply the bar resolution for homology groups in low degree.

Example 5.2.4. We have H1(G) ∼= G/[G,G] for every group G.

To see this, let Z be the trivial G-module and consider the beginning of the bar resolution

Z[G]⊗ Z[G]⊗ Z[G] // Z[G]⊗ Z[G] // Z[G]

g0|g1|g2 // g0g1|g2 − g0|g1g2 + g0|g1

g0|g1 // g0g1 − g0
Since Z is a free module, this is a free resolution. Hence we obtain the homology by tensoring
this sequence from the left with the trivial Z[G]-module Z, which gives

Z[G]⊗ Z[G] // Z[G] // Z

g1|g2 // g2 − g1g2 + g1

gi // 0

So we have
H1(G) = Z[G]/(g1 + g2 − g1g2 | g1, g2 ∈ G).

Now H1(G) satisfies the universal property of the abelianization, and hence is isomorphic to
Gab = G/[G,G]. This is proved as follows. The canonical map G → H1(G) is a surjective
group homomorphism. We need to show that every morphism f : G → A for an abelian
group A factorizes uniquely by H1(G). Since A is abelian, we can extend f uniquely to a
homomorphism Z[G]→ A, namely by∑

g∈G

ag[g] 7→
∑
g∈G

agf(g).

Obvioulsy g1 + g2 − g1g2 lies in the kernel of this map. Hence H1(G) satisfies the universal
property as claimed.

5.3. Group cohomology by explicit coboundary map

As for homology we can use a special resolution to compute the group cohomology. Of
course, the definition gives isomrophic cohomology groups, which we have defined by derived
functors.

Let A be a G-module and let Cn(G,A) denote the set of functions of n variables

f : G×G× · · · ×G→ A
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into A. For n = 0 let

C0(G,A) = Hom(1, A) ∼= A.

The elements of Cn(G,A) are called n-cochains. The set Cn(G,A) is an abelian group with the
usual definitions of addition and the element 0:

(f + g)(x1, . . . , xn) = f(x1, . . . , xn) + g(x1, . . . , xn)

0(x1, . . . , xn) = 0

We now define homomorphisms δ = δn : Cn(G,A)→ Cn+1(G,A).

Definition 5.3.1. If f ∈ Cn(G,A) then define δn(f) by

δn(f)(x1, . . . , xn+1) = x1f(x2, . . . , xn+1)

+
n∑
i=1

(−1)if(x1, . . . , xi−1, xixi+1, . . . , xn+1)

+ (−1)n+1f(x1, . . . , xn)

For n = 0, 1, 2, 3 we obtain

(δ0f)(x1) = x1f − f(5.1)

(δ1f)(x1, x2) = x1f(x2)− f(x1x2) + f(x1)(5.2)

(δ2f)(x1, x2, x3) = x1f(x2, x3)− f(x1x2, x3) + f(x1, x2x3)− f(x1, x2)(5.3)

(δ3f)(x1, x2, x3, x4) = x1f(x2, x3, x4)− f(x1x2, x3, x4) + f(x1, x2x3, x4)

− f(x1, x2, x3x4) + f(x1, x2, x3)
(5.4)

For n = 0, f is considered as an element of A so that x1f makes sense.

We will show that δ2(f) = 0 for every f ∈ Cn(G,A), i.e., δn+1δn = 0 for all n ∈ N and hence
im δn ⊆ ker δn+1.

Lemma 5.3.2. It holds δn+1δn(Cn(G,A)) = 0 for all n ∈ N. Hence the following sequence
is a complex.

A
δ0−→ C1(G,A)

δ1−→ · · · δn−1−−→ Cn(G,A)
δn−→ Cn+1(G,A)

δn+1−−→ · · ·

Proof. Let f ∈ Cn(G,A). We want to show δ2(f)(x1, . . . , xn+2) = 0. Define gj ∈
Cn+1(G,A) for 0 ≤ j ≤ n+ 1 by

gj(x1, . . . , xn+1) =


x1f(x2, . . . , xn+1), j = 0

(−1)jf(x1, . . . , xjxj+1, . . . , xn+1), 1 ≤ j ≤ n

(−1)n+1f(x1, . . . , xn), j = n+ 1

This means

(δf)(x1, . . . , xn+1) =
n+1∑
j=0

gj(x1, . . . , xn+1)
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Then define gji ∈ Cn+2(G,A) for 0 ≤ i ≤ n+ 2 by

gji(x1, . . . , xn+2) =


x1gj(x2, . . . , xn+2), i = 0

(−1)igj(x1, . . . , xixi+1, . . . , xn+2), 1 ≤ i ≤ n+ 1

(−1)n+2gj(x1, . . . , xn+1), i = n+ 2

This means

(δgj)(x1, . . . , xn+2) =
n+2∑
i=0

gij(x1, . . . , xn+2)

It follows

δ2(f)(x1, . . . , xn+2) =
n+1∑
j=0

(δgj)(x1, . . . , xn+2) =
n+1∑
j=0

n+2∑
i=0

gij(x1, . . . , xn+2)

We will show that for all 0 ≤ j ≤ n+ 1 and all j + 1 ≤ i ≤ n+ 2

(gji + gi−1,j)(x1, . . . , xn+2) = 0(5.5)

This will imply our result as follows. Write down all gji as an (n+ 2)× (n+ 3) array and cancel
out each pair (gji, gi−1,j) starting with j = 0 and i = 1, . . . , n+2, then j = 1 and i = 2, . . . n+2,
until j = n + 1 and i = n + 2. Then all entries of the array are cancelled out and we obtain
δ2(f) =

∑n+1
j=0

∑n+2
i=0 gij = 0.

It remains to show (5.5). Assume first 1 ≤ j ≤ n. If i > j + 1 then

gji(x1, . . . , xn+2) = (−1)igj(x1, . . . , xixi+1, . . . , xn+2)

= (−1)igj(τ1, . . . , τn+1)

= (−1)i+jf(τ1, . . . , τjτj+1, . . . , τn+1)

= (−1)i+jf(x1, . . . , xjxj+1, . . . , xixi+1, . . . , xn+2)

with

(τ1, . . . , τj, τj+1, . . . , τi, τi+1, . . . , τn+1) =

(x1, . . . , xj, xj+1, . . . , xixi+1, xi+2, . . . , xn+2).

On the other hand we have

gi−1,j(x1, . . . , xn+2) = (−1)jgi−1(x1, . . . , xjxj+1, . . . , xn+2)

= (−1)jgi−1(σ1, . . . , σj, . . . , σn+1)

= (−1)i−1+jf(σ1, . . . , σi−1σi, . . . , σn+1)

= (−1)i+j−1f(x1, . . . , xjxj+1, . . . , xixi+1, . . . , xn+2)

with

(σ1, . . . , σj−1, σj, . . . , σi−1, σi, . . . , σn+1) =

(x1, . . . , xj−1, xjxj+1, . . . , xi, xi+1, . . . , xn+2).

It follows gij + gi−1,j = 0. If i = j + 1 we obtain in the same way

gji(x1, . . . , xn+2) = (−1)i+jf(x1, . . . , xi−1xixi+1, . . . , xn+2)

= −gi−1,j(x1, . . . , xn+2)
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The remaining cases j = 0 and j = n+ 1 follow similarly. �

Define the subgroups Zn(G,A) = ker δn and Bn(G,A) = im δn−1. For n = 0 let B0(G,A) =
0. Since Bn(G,A) ⊆ Zn(G,A) we can form the factor group:

Definition 5.3.3. The n-th cohomology group of G with coefficients in A is given by the
factor group

Hn(G,A) = Zn(G,A)/Bn(G,A) = ker δn/ im δn−1

These groups coincide with the cohomology groups defined by the right derived functors.

5.4. The zeroth cohomology group

For n = 0 we have

H0(G,A) = Z0(G,A) = {a ∈ A | xa = a ∀x ∈ G} = AG

Hence H0(G,A) = AG is the module of invariants. Let L/K be a finite Galois extension
with Galois group G = Gal(L/K). Then L and L× are G-modules. Here L is regarded as a
group under addition and L× is the multiplicative group of units in L. We have

H0(G,L×) = (L×)G = K×

Let p be a prime and Cp the cyclic group of order p.

Example 5.4.1. Let A = Cp be a G = Cp-module. Then xa = a for all x ∈ Cp, i.e., A is a
trivial Cp-module. We have

H0(Cp, Cp) = Cp

Denote by xa the action of G on A. Let T : Cp → Aut(Cp) ∼= Cp−1 be the homomorphism
defined by xa = T (x)a. Now kerT being a subgroup of Cp must be trivial or equal to Cp, since
p is prime. However kerT = 1 is impossible since T is not injective. In fact, Cp is not contained
in Aut(Cp). Hence it follows kerT = Cp and T (Cp) = {id}. This means xa = T (x)a = a. Since
A is a trivial Cp-module it follows AG = A.

5.5. The first cohomology group

If A is a G-module then the explicit form of the 1-cocycles gives that

Z1(G,A) = {f : G→ A | f(xy) = xf(y) + f(x)}
B1(G,A) = {f : G→ A | f(x) = xa− a for some a ∈ A}

The 1-cocycles are also called crossed homomorphisms of G into A. A 1-coboundary is
a crossed homomorphism, i.e., δ1δ0 = 0. For the convenience of the reader we repeat the
calculation. Let f = δ0(a)(x1) = x1a− a and compute

(δ1δ0)(a)(x, y) = δ1(f)(x, y) = xf(y)− f(xy) + f(x)

= x(ya− a)− (xy)a+ a+ xa− a
= 0

Hence (δ1δ0)(a) = 0. Let A be a trivial G-module. Then a crossed homomorphism is just a
group homomorphism, i.e., Z1(G,A) = Hom(G,A), B1(G,A) = 0 and

H1(G,A) = Hom(G,A)

is the set of group homomorphisms from G into A.
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Remark 5.5.1. We want to consider sometimes right G-modules instead of left G-modules.
If A is a left Z[G]-module with action (x, a) 7→ xa, then a ∗ x = xa defines a right module
action with multiplication y ∗ x = xy in G: a ∗ (x ∗ y) = (yx)a = y(xa) = (a ∗ x) ∗ y. Then the
definition of 1-cocycles and 1-coboundaries becomes

Z1(G,A) = {f : G→ A | f(x ∗ y) = f(x) ∗ y + f(y)}
B1(G,A) = {f : G→ A | f(x) = a ∗ x− a for some a ∈ A}

Proposition 5.5.2. Let A be a G-module. There exists a bijection between H1(G,A) and
the set of conjugacy classes of subgroups H ≤ GnA complementary to A in which the conjugacy
class of G maps to zero.

Proof. There is a bijection between subgroups H ≤ G n A complementary to A and 1-
cocycles h ∈ Z1(G,A). If H is complementary to A then H = τ(G) for a section τ : G→ GnA
for π : GnA→ G. Writing τ(x) = (x, h(x)) with h : G→ A we have H = {(x, h(x)) | x ∈ G}.
We want to show that h ∈ Z1(G,A). The multiplication in GnA is given by the usual formula
for the semidirect product. Note that this is a right action. Since we write A additively, the
formula becomes

(x, a)(y, b) = (xy, ay + b)

Since τ(xy) = τ(x)τ(y) we have

(xy, h(xy)) = (x, h(x))(y, h(y)) = (xy, h(x)y + h(y))

so that h(xy) = h(x)y + h(y). The converse is also clear. Moreover two complements are
conjugate precisely when their 1-cocycles differ by a 1-coboundary: for a ∈ A ≤ GnA the set
aHa−1 consists of all elements of the form

(1, a)(x, h(x))(1,−a) = (x, ax− a− h(x))

Hence the cosets of B1(G,A) in Z1(G,A) correspond to the A-conjugacy classes of complements
H in A, or in Gn A since Gn A = HA. �

Corollary 5.5.3. All the complements of A in Gn A are conjugate iff H1(G,A) = 0.

We have the following result on cohomology groups of finite groups.

Proposition 5.5.4. Let G be a finite group and A be a G-module. Then every element of
H1(G,A) has a finite order which divides |G|.

Proof. Let f ∈ Z1(G,A) and a =
∑

y∈G f(y). Then xf(y)− f(xy) + f(x) = 0. Summing
over this formula we obtain

0 = x
∑
y∈G

f(y)−
∑
y∈G

f(xy) + f(x)
∑
y∈G

1

= xa− a+ |G|f(x)

It follows that |G|f(x) ∈ B1(G,A), which implies |G|Z1(G,A) ⊆ B1(G,A). Hence |G|H1(G,A) =
0. �

Corollary 5.5.5. Let G be a finite group and A be a finite G-module such that (|G|, |A|) =
1. Then H1(G,A) = 0.

Proof. We have |A|f = 0 for all f ∈ C1(G,A). Then the order of [f ] ∈ H1(G,A) divides
(|G|, |A|) = 1. Hence the class [f ] is trivial. �
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Remark 5.5.6. We have indeed that Hn(G,A) = 0 for all n ∈ N, provided the conditions
of the corollary are satisfied.

We shall conclude this section by proving the following result which can be found already
in Hilberts book Die Theorie der algebraischen Zahlkörper of 1895. It is called Hilbert’s Satz
90 and we present a generalization of it due to Emmy Noether.

Proposition 5.5.7. Let L/K be a finite Galois extension with Galois group G = Gal(L/K).
Then we have H1(G,L×) = 1 and H1(G,L) = 0.

Proof. We have to show Z1 = B1 in both cases. Let f ∈ Z1(G,L×). This implies
f(σ) 6= 0 for all σ ∈ G since f : G→ L×. The 1-cocycle condition is, written multiplicatively,
f(στ) = f(σ)σf(τ) or σf(τ) = f(σ)−1f(στ). The 1-coboundary condition is g(σ) = σ(a)/a for
a constant a. By a well known result on the linear independence of automorphisms it follows
that there exists a β ∈ L× such that

α : =
∑
τ∈G

f(τ)τ(β) 6= 0

It follows that for all σ ∈ G

σ(α) =
∑
τ∈G

σ(f(τ))σ(τ(β)) =
∑
τ∈G

f(σ)−1f(στ)στ(β) = f(σ)−1
∑
τ∈G

f(τ)τ(β)

= f(σ)−1α

It follows f(σ) = α
σ(α)

= σ(α−1)
α−1 , hence f ∈ B1(G,L×).

For the second part, let f ∈ Z1(G,L). Since L/K is separable there exists a β ∈ L such that

a : =
∑
τ∈G

τ(β) = TrL/K(β) 6= 0

Setting γ = a−1β we obtain
∑

τ∈G τ(γ) = 1 since τ(a) = a and τ(a−1) = a−1. Let

x : =
∑
τ∈G

f(τ)τ(γ)

Hence we obtain for all σ ∈ G

σ(x) =
∑
τ∈G

σ(f(τ))στ(γ) =
∑
τ∈G

f(στ)στ(γ)− f(σ)στ(γ)

= x− f(σ)

It follows f(σ) = x− σ(x) = σ(−x)− (−x), hence f ∈ B1(G,L). �

Remark 5.5.8. We have Hn(G,L) = 0 for all n ∈ N, but not Hn(G,L×) = 1 in general.

5.6. The second cohomology group

Let G be a group and A be an abelian group. We recall the definition of a factor system,
written additively for A. A pair of functions (f, T ), f : G × G → A and T : G → Aut(A) is
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called factor system to A and G if

f(xy, z) + f(x, y)z = f(x, yz) + f(y, z)(5.6)

T (xy) = T (y)T (x)(5.7)

f(1, 1) = 0(5.8)

where f(x, y)z = T (z)(f(x, y)). Now let

0→ A
α−→ E

β−→ G→ 1

be an abelian group extension of A by G. This equippes A with a natural G-module structure.
We obtain T (x)(a) = xa, or T (x)(a) = ax, for x ∈ G and a ∈ A, which is independent of a
transversal function. In fact, the extension induces an (anti)homomorphism Tτ : G→ Aut(A)
with a transversal function τ : G → E. Since A is abelian it follows γh(x) = id|A so that
Tτ ′(x) = γh(x)Tτ (x) = Tτ (x). If we fix T and hence the G-module structure on A, then the
set of factor systems f = (f, T ) to A and G forms an abelian group with respect to addition:
(f + g)(x, y) = f(x, y) + g(x, y). It follows from (5.6) that this group is contained in the group

Z2(G,A) = {f : G×G→ A | f(y, z)− f(xy, z) + f(x, yz)− f(x, y)z = 0}
where we have considered A as a right G-module. One has to rewrite the 2-cocycle condition
from Definition 5.3.1 for a right G-module according to Remark 5.5.1. Recall that

B2(G,A) = {f : G×G→ A | f(x, y) = h(y)− h(xy) + h(x)y}
is a subgroup of Z2(G,A) and the factor group is H2(G,A). Indeed, a 2-coboundary is a
2-cocycle. The sum of the following terms equals zero.

f(y, z) = h(z)− h(yz) + h(y)z

−f(xy, z) = −h(z) + h(xyz)− h(xy)z

f(x, yz) = h(yz)− h(xyz) + h(x)yz

−f(x, y)z = −h(y)z + h(xy)z − h(x)yz

Theorem 5.6.1. Let G be a group and A be an abelian group, and let M denote the set of
group extensions

0→ A
α−→ E

β−→ G→ 1

with a given G-module structure on A. Then there is a 1− 1 correspondence between the set of
equivalence classes of extensions of A by G contained in M with the elements of H2(G,A). The
class of split extensions in M corresponds to the class [0] ∈ H2(G,A). This class corresponds
to the trivial class represented by the trivial factor system f(x, y) = 0.

Proof. By Schreier’s theorem the set of equivalence classes of such extensions is in bijective
correspondence with the equivalence classes of factor systems f ∈ Z2(G,A). Two factor systems
are equivalent if and only if they differ by a 2-coboundary in B2(G,A), so we have

fτ ′(x, y) = fτ (x, y)− h(xy) + h(x)y + h(y)

Note that there is exactly one normalized 2-cocycle in each cohomology class, i.e., with f(1, 1) =
0. Hence two extensions of A by G contained in M are equivalent if and only if they determine
the same element of H2(G,A). �

Example 5.6.2. Let A = Z/pZ be a trivial G = Cp-module. Then

H2(G,A) ∼= Z/pZ.
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Here p is a prime. There are exactly p equivalence classes of extensions

0→ Z/pZ α−→ E
β−→ Cp → 1

Example 5.6.3. Consider the Galois extension L/K = C/R with Galois group G =
Gal(C/R) ∼= C2. Then we have

H2(G,L×) ∼= Z/2Z

The proof is left as an exercise. In general we have H2(G,L×) ∼= Br(L/K), where Br(L/K)
is the relative Brauer group. It consists of equivalence classes of central simple K-algebras S
such that S ⊗K L ∼= Mn(L). Two central simple K-algebras are called equivalent if their
skew-symmetric components are isomorphic. For any field K the equivalence classes of finite-
dimensional central simple K-algebras form an abelian group with respect to the multiplication
induced by the tensor product.
The group Br(C/R) consists of two equivalence classes. The matrix algebra M2(R) represents
the class [0] and the real quaternion algebra H represents the class [1].
We will now generalize Proposition 5.5.4.

Proposition 5.6.4. Let G be a finite group and A be a G-module. Then every element of
Hn(G,A), n ∈ N, has a finite order which divides |G|.

Proof. Let f ∈ Cn(G,A) and denote

a(x1, . . . , xn−1) =
∑
y∈G

f(x1, . . . , xn−1, y)

Summing the formula for δf and using∑
y∈G

f(x1, . . . , xn−1, xny) = a(x1, . . . , xn−1)

we obtain∑
y∈G

(δf)(x1, . . . , xn, y) = x1a(x2, . . . , xn)

+
n−1∑
i=1

(−1)ia(x1, . . . , xixi+1, . . . , xn) + (−1)na(x1, . . . , xn−1)

+ (−1)n+1|G|f(x1, . . . , xn)

= (δa)(x1, . . . , xn) + (−1)n+1|G|f(x1, . . . , xn)

Hence if δf = 0, then |G|f(x1, . . . , xn) = ±(δa)(x1, . . . , xn) is an element of Bn(G,A). Then
|G|Zn(G,A) ⊆ Bn(G,A), so that |G|Hn(G,A) = 0. �

Corollary 5.6.5. Let G be a finite group and A be a finite G-module such that (|G|, |A|) =
1. Then Hn(G,A) = 0 for all n ≥ 1. In particular, H2(G,A) = 0. Hence any extension of A
by G is split.

The last part is a special case of the Schur-Zassenhaus theorem. We will sketch the proof
of the general case.

Schur-Zassenhaus 5.6.6. If n and m are relatively prime, then any extension 1→ A
α−→

E
β−→ G→ 1 of a group A of order n by a group G of order m is split.
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Proof. If A is abelian, the extensions are classified by the groups H2(G,A), one group for
every G-module structure on A. These are all zero, hence any extension of A by G is split.
In the general case we use induction on n. It suffices to prove that E contains a subgroup S
of order m. Such a subgroup must be isomorphic to G under β : E → G. For, if S is such a
subgroup, then S ∩A is a subgroup whose order divides |S| = m and |A| = n. Then S ∩A = 1.
Also AS = E since α(A) = A is normal in E so that AS is a subgroup whose order is divided
by |S| = m and |A| = n and so is a multiple of nm = |E|. It follows that E is a semidirect
product and hence the extension of A by G is split.
Choose a prime p dividing n and let P be a p-Sylow subgroup of A, hence of E. Let Z be the
center of P . It is well known that Z 6= 1, see [3], p. 75. Let N be the normalizer of Z in E.
A counting argument shows that AN = E and |N/(A ∩ N)| = m, see [4]. Hence there is an
extension 1→ (A ∩N)→ N → G→ 1. If N 6= E, this extension splits by induction, so there
is a subgroup of N , and hence of E, isomorphic to G. If N = E, then Z CE and the extension
1→ A/Z → E/Z → G→ 1 is split by induction. Let G′ be a subgroup of E/Z isomorphic to
G and let E ′ denote the set of all x ∈ E mapping onto G′. Then E ′ is a subgroup of E, and
0 → Z → E ′ → G′ → 1 is an extension. As Z is abelian, the extension splits and there is a
subgroup of E ′, hence of E, isomorphic to G′ ∼= G. �

5.7. The third cohomology group

We have seen that Hn(G,A) for n = 0, 1, 2 have concrete group-theoretic interpretations.
It turns out that this is also the case for n ≥ 3. We will briefly discuss the case n = 3, which
is connected to so called crossed modules. Such modules arise also naturally in topology.

Definition 5.7.1. Let E and N be groups. A crossed module (N,α) over E is a group
homomorphism α : N → E together with an action of E onN , denoted by (e, n) 7→ en satisfying

α(m)n = mnm−1(5.9)

α(en) = e α(n) e−1(5.10)

for all n,m ∈ N and all e ∈ E.

Example 5.7.2. Let E = Aut(N) and α(n) be the inner automorphism associated to n.
Then (N,α) is a crossed module over E.

By definition we have α(m)n = α(m)(n) = mnm−1 and

α(en)(m) = α(e(n))(m) = e(n)me(n)−1 = e(ne−1(m)n−1) = e(α(n)(e−1(m)))

= (eα(n)e−1)(m)

Example 5.7.3. Any normal subgroup N C E is a crossed module with E acting by conju-
gation and α being the inclusion.

Let (N,α) be a crossed module over E and A := kerα. Then the sequence 0→ A
i−→ N

α−→ E
is exact. Since imα is normal in E by (5.10) G = coker(α) is a group. This means that the

sequence N
α−→ E

π−→ G → 1 is exact. Since A is central in N by (5.9), and since the action of
E on N induces an action of G on A, we obtain a 4-term exact sequence

(5.11) 0→ A
i−→ N

α−→ E
π−→ G→ 1

where A is a G-module. It turns out that equivalence classes of exact sequences of this form
are classified by the group H3(G,A). Let us explain the equivalence relation. Let G be an
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arbitrary group and A be an arbitrary G-module. Consider all possible exact sequences of the
form (5.11), where N is a crossed module over E such that the action of E on N induces the
given action of G on A. We take on these exact sequences the smallest equivalence relation such
that two exact sequences as shown below are equivalent whenever their diagram is commutative:

1 // A

id
��

// N

f
��

α // E

g
��

// G

id
��

// 1

1 // A // N
′ α′ // E

′ // G // 1

Note that f and g need not be isomorphisms. We then have:

Theorem 5.7.4. There is a 1 − 1 correspondence between equivalence classes of crossed
modules represented by sequences as above and elements of H3(G,A).

We omit the proof, which can be found in [9], Theorem 6.6.13.

5.8. Inflation, restriction and the cup product

Definition 5.8.1. Let G be a group, H a subgroup and M be an H-module. Let

IndGH(M) = {ϕ : G→M | ϕ(hg) = hϕ(g) for all h ∈ H, g ∈ G}

Then IndGH(M) becomes a G-module with the operations

(ϕ+ ϕ′)(x) = ϕ(x) + ϕ′(x)

(gϕ)(x) = ϕ(xg)

Indeed, (g, ϕ) 7→ gϕ defines an action since (g′g)ϕ = g′(gϕ):

((g′g)ϕ)(x) = ϕ(xg′g) = (gϕ)(xg′) = (g′(gϕ))(x)

A homomorphism α : M → N of H-modules defines a homomorphism

α∗ : IndGH(M)→ IndGH(N)

of G-modules by α∗(ϕ) = α ◦ ϕ. Hence IndGH : MH →MG is a functor.

Definition 5.8.2. A G-module is said to be induced if it is isomorphic to IndG1 (A) =
{ϕ : G→ A} for some abelian group A.

Often these modules are called coinduced, and denoted by CoInd. Note that the maps ϕ
are just maps, not necessarily homomorphisms. We have IndGH(M) = HomH(Z[G],M), where
Z[G] is an H-module as well, with its canonical G-action, and the action of G on an H-module
homomorphism ϕ : Z[G]→M is given by (σϕ)(g) := ϕ(g.σ) for a basis element g of Z[G].

Lemma 5.8.3. For any G-module M and H-module N we have

HomG(M, IndGH(N)) ∼= HomH(M,N)

Moreover the functor IndGH : MH →MG is exact.

Proof. Given a G-homomorphism α : M → IndGH(N), we define β : M → N by β(m) =
α(m)(1), where 1 is the identity in G. Then we have for any g ∈ G

β(gm) = (α(gm))(1) = (gα(m))(1) = α(m)(g · 1) = α(m)(g)
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because α is a G-homomorphism and α(m) ∈ IndGH(N). Hence for h ∈ H
β(hm) = α(m)(h) = h(α(m)(1) = h(β(m))

so that β ∈ HomH(M,N). Conversely, given such a β we define α : M → IndGH(N) such that
α(m)(g) = β(gm). It follows similarly that α is a G-homomorphism. These correspondences
yield the desired isomorphism of the first part. Given an exact sequence of H-modules

0→M
α−→ N

β−→ P → 0

we have to prove that the sequence of G-modules

0→ IndGH(M)
α∗−→ IndGH(N)

β∗−→ IndGH(P )→ 0

is exact. Let ϕ ∈ IndGH(M) and α∗(ϕ) = α ◦ ϕ = 0. Since α is injective we have ϕ = 0, so that
α∗ is injective. Furthermore (β∗α∗)(ϕ) = β ◦ α ◦ ϕ = 0 since β ◦ α = 0. Hence β∗α∗ = 0 and
imα∗ ⊂ ker β∗.
Conversely let ψ ∈ ker β∗, i.e., β∗(ψ) = β ◦ ψ = 0. For all g ∈ G there is an m ∈ M such
that ψ(g) = α(m), because ψ(g) ∈ ker β ⊂ imα. Define a map ϕ : G → M by ϕ(g) = m.
This is well defined, since α is injective. Furthermore ψ = α ◦ ϕ = α∗(ϕ). We have to show
that ϕ ∈ IndGH(M), and hence ψ ∈ imα∗. Then ker β∗ ⊂ imα∗ and it follows the exactness at
IndGH(N). Since ψ ∈ IndGH(N) we have

α(ϕ(hg)) = ψ(hg) = hψ(g) = hα(m) = α(hm) = α(hϕ(g))

and hence ϕ(hg) = hϕ(g), because α is injective. This shows ϕ ∈ IndGH(M).
Finally we have to show that β∗ is surjective. Let S be a set of right coset representatives for
H in G, i.e., G = ∪s∈S Hs, and let ϕ ∈ IndGH(P ). For each s ∈ S, choose an n(s) ∈ N mapping
under β to ϕ(s) ∈ P , and define ϕ̃(hs) = h·n(s). Then ϕ̃ ∈ IndGH(N) and β∗(ϕ̃) = β ◦ϕ̃ = ϕ. �

Theorem 5.8.4 (Shapiro’s Lemma). Let G be a group and H be a subgroup of G. For any
H-module N and all r ≥ 0, there is a canonical isomorphism

Hr(G, IndGH(N)) ∼= Hr(H,N)

Proof. For r = 0, the isomorphism is the composite of the following isomorphisms:

NH ∼= HomH(Z, N) ∼= HomG(Z, IndGH(N)) ∼= IndGH(N)G

The second isomorphism follows from Lemma 5.8.3. Z is regarded as a trivial module. Now
choose an injective resolution N → I• of N . By applying the functor IndGH , we obtain an
injective resolution IndGH(N)→ IndGH(I•) of the G-module IndGH(N), because IndGH is exact and
preserves injectives. Hence

Hr(G, IndGH(N)) = Hr((IndGH(I•))G) = Hr(I•H) = Hr(H,N)

�

Corollary 5.8.5. If M is an induced G-module, then Hn(G,M) = 0 for all n ≥ 1.

Proof. If M = IndG1 (A), then Hn(G,M) = Hn({1}, A) = 0. �

Corollary 5.8.6. Let L/K be a finite Galois extension and G = Gal(L/K). Then
Hn(G,L) = 0 for all n ≥ 1.

Recall that Hn(G,L×) in general need not be trivial.
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Proof. By the normal basis theorem there exists an α ∈ L such that {σα | σ ∈ G} is a
basis (a “normal” basis) for L as a K-vector space. This means, L is isomorphic to K[G] as a
G-module. But K[G] = IndG1 K, and hence Hn(G,L) = Hn({1}, K) = 0. �

If α : M → N is a homomorphism of G-modules, then it induces a homomorphism

Hn(G,M)→ Hn(G,N)

of cohomology groups. This can be generalized as follows.

Definition 5.8.7. Let M be a G-module and N be a G′-module. Two homomorphisms
α : G′ → G and β : M → N are said to be compatible if

β(α(g′)m) = g′β(m) ∀ g′ ∈ G′,m ∈M

In this case M becomes a G′-module by g′m = α(g′)m such that β : M → N becomes a
homomorphism of G′-modules. Furthermore the map

(α, β) : C•(G,M)→ C•(G′, N)

given by ϕ 7→ β◦ϕ◦αn defines a homomorphism of complexes. It commutes with the coboundary
operators, so that it induces a homomorphism of cohomology groups

(α, β) : Hn(G,M)→ Hn(G′, N).

Example 5.8.8. Let H be a subgroup of G and α : H ↪→ G be the inclusion map. For any
H-module N let β : IndGH(N) → N be the map defined by β(ϕ) = ϕ(1). Then α and β are
compatible:

β(α(h)ϕ) = β(hϕ) = hβ(ϕ)

The induced homomorphism

Hn(G, IndGH(N))→ Hn(H,N)

is precisely the isomorphism in Shapiro’s Lemma.

Similarly, if H is a subgroup of G, α : H ↪→ G is the inclusion map and β : M → M is the
identity, both maps are compatible:

Definition 5.8.9. The induced homomorphisms are called the restriction homomorphisms

Res: Hn(G,M)→ Hn(H,M)

These homomorphisms can also be constructed as follows: let ϕm(g) = gm. Then ϕm ∈
IndGH(M) and ϕ : M → IndGH(M), m 7→ ϕm is a homomorphism of G-modules. Denote by
ϕ̃ : Hn(G,M) → Hn(G, IndGH(M)) the induced homomorphism of cohomology groups. Let
ψ : Hn(G, IndGH(M))→ Hn(H,M) be the isomorphism in Shapiro’s Lemma. Then we have

Res = ψ ◦ ϕ̃

Let H be a normal subgroup of G, α : G → G/H be the quotient map and β : MH ↪→ M
be the inclusion. Then α and β are compatible:

Definition 5.8.10. The induced homomorphisms are called the inflation homomorphisms

Inf : Hn(G/H,MH)→ Hn(G,M)

There is the following inflation-restriction exact sequence.
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Theorem 5.8.11. Let G be a group, H be a normal subgroup of G and M be a G-module.
Let n ∈ N. Assume that Hr(H,M) = 0 for all r with 1 ≤ r < n. Then the following sequence
is exact.

0→ Hn(G/H,MH)
Inf−→ Hn(G,M)

Res−−→ Hn(H,M)

For n = 1 the hypothesis on Hr(H,M) is vacuous, so that we always have

(5.12) 0→ H1(G/H,MH)
Inf−→ H1(G,M)

Res−−→ H1(H,M)

Proof. Let n = 1. We will show that Inf is injective and im Inf = ker Res. Let ϕ : G/H →
MH be a 1-cocycle and ϕ′ = Infϕ. Then ϕ′ is a 1-cocycle in H1(G,M) via G→ G/H

ϕ−→MH →
M . Suppose that the class of ϕ′ is trivial, i.e., ϕ′ is a 1-coboundary. Then ϕ′(g) = gm−m for
some m ∈ M . Hence gm −m = ghm −m for all h ∈ H, so that m = hm for all h ∈ H, i.e.,
m ∈ MH . But then ϕ(gH) = gHm −m is a 1-coboundary in H1(G/H,MH) and the class of
ϕ is zero. It follows that Inf is injective. Similarly we see that im Inf = ker Res. For n > 1 the
result can be proved by induction. �

Example 5.8.12. Let Ω/K and L/K be finite Galois extension with L ⊂ Ω. Then H :=
Gal(Ω/L) is a normal subgroup of G := Gal(Ω/K), and with M = Ω× we have MH = L×.
Since we have H1(H,Ω×) = 1, there is an exact sequence

1→ H2(G/H,L×)→ H2(G,Ω×)→ H2(H,Ω×)

Remark 5.8.13. The cohomology groups Hn(H,M) can be equipped with a G-module
structure, such that H acts trivially on it. Then Hn(H,M) becomes a G/H-module and it
is not difficult to show that the image of Hn(G,M) under Res actually lies in Hn(H,M)G/H .
Then (5.12) can be extended to the following special case of of the Hochschild-Serre spectral
sequence

0→ H1(G/H,MH)
Inf−→ H1(G,M)

Res−−→ H1(H,M)G/H

→ H2(G/H,MH)
Inf−→ H2(G,M)

The result for n ≥ 1 here is as follows:

Theorem 5.8.14. Let G be a group, H be a normal subgroup of G and M be a G-module.
Let n ≥ 1 be an integer and assume that that Hr(H,M) = 0 for all r with 1 ≤ r < n. Then
there is a natural map

τn,M : Hn(H,M)G/H → Hn+1(G/H,MH)

fitting into the following exact sequence:

0→ Hn(G/H,MH)
Inf−→ Hn(G,M)

Res−−→ Hn(H,M)G/H
τn,M−−−→

→ Hn+1(G/H,MH)
Inf−→ Hn+1(G,M).

Among many possible topics within techniques from group cohomology we want to mention
the cup-product (see [5]). We will assume that G is a group and A,B are G-modules. A
cup-product is an associative product operation

H i(G,A)×Hj(G,B)→ H i+j(G,A⊗B),

(a, b) 7→ a ∪ b,
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which is graded-commutative, i.e., it satisfies

a ∪ b = (−1)ij(b ∪ a).

Here A⊗B = A⊗ZB is the tensor product of A and B over the commutative ring Z, equipped
with the G-module structure given by

g.(a⊗ b) = g.a⊗ g.b
for g ∈ G, a ∈ A and b ∈ B. Note that in general this is different from the tensor product of
A and B over the group ring Z[G]. We begin with a construction of the cup-product with the
first step as follows: let A• and B• be complexes of abelian groups, i.e.,

· · · → Ai−1
∂i−1
A−−→ Ai

∂iA−→ Ai+1 → · · · ,
and similarly for B•. Then we define the tensor product complex A• ⊗ B• by first considering
the double complex

...
...

...

· · · // Ai−1 ⊗Bj+1

OO

// Ai ⊗Bj+1

OO

// Ai+1 ⊗Bj+1

OO

// · · ·

· · · // Ai−1 ⊗Bj

OO

// Ai ⊗Bj

OO

// Ai+1 ⊗Bj

OO

// · · ·

· · · // Ai−1 ⊗Bj−1

OO

// Ai ⊗Bj−1

OO

// Ai+1 ⊗Bj−1

OO

// · · ·

...

OO

...

OO

...

OO

where the horizontal maps are given by

∂hi,j = ∂iA ⊗ id : Ai ⊗Bj → Ai+1 ⊗Bj,

a⊗ b 7→ ∂iA(a)⊗ b,
and the vertical maps are given by

∂vi,j = id⊗(−1)i∂jB : Ai ⊗Bj → Ai ⊗Bj+1,

a⊗ b 7→ a⊗ (−1)i∂jB(b).

The above squares anticommute, i.e., one has

∂hi,j+1 ◦ ∂vi,j = −∂vi+1,j ◦ ∂hi,j.
Now take the total complex associated with this double complex. This is, by definition, the
complex T • with

T n =
⊕
i+j=n

Ai ⊗Bj

and ∂n : T n → T n+1 given on the component Ai⊗Bj by ∂hi,j+∂
v
i,j. The above anticommutativity

then implies ∂n+1 ◦ ∂n = 0, i.e., that T • is really a complex. We define this T • to be the tensor
product of A• and B•, and denote it as above by A• ⊗B•.
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This enables us to proceed to the second step of the cup-product construction. In addition to
the situation before, assume further given abelian groups A and B. Then we have the complex
Hom(A•, A) whose degree i term is Hom(A−i, A) and whose differentials are those induced by
the differentials of A•. In the same way we have the complex Hom(B•, B). We construct a
product operation

H i(Hom(A•, A))×Hj(Hom(B•, B))→ H i+j(Hom(A• ⊗B•, A⊗B))(5.13)

as follows. Given homomorphisms of abelian groups α : A−i → A and β : B−j → B with
i+ j = n, the tensor product α⊗ β is a homomorphism

α⊗ β : A−i ⊗B−j → A⊗B,

and hence defines an element of the degree (i+j) term in Hom(A•⊗B•, A⊗B) via the diagonal
embedding

Hom(A−i ⊗B−j, A⊗B)→ Hom

( ⊕
k+l=i+j

A−k ⊗B−l, A⊗B

)
.

Here if α ∈ Zi(Hom(A•, A)) and β ∈ Zj(Hom(B•, B)), then by construction of A• ⊗ B• we
have

α⊗ β ∈ Zi+j(Hom(A• ⊗B•, A⊗B)).

Moreover, if α ∈ Bi(Hom(A•, A)), then α⊗β ∈ Zi+j(Hom(A•⊗B•, A⊗B)). The same follows
if β ∈ Bj(Hom(B•, B)). This defines the required map (5.13).

If in this construction all abelian groups carry a G-module structure for some group G and G-
(module)-homomorphisms α and β, then also α⊗β is a G-homomorphism, hence by restricting
to G-homomorphisms the product (5.13) induces a product

H i(HomG(A•, A))×Hj(HomG(B•, B))→ H i+j(HomG(A• ⊗B•, A⊗B)),

where A⊗B and A• ⊗B• are endowed with the G-module structure defined before.

For the next step we need the following proposition. Recall that the lower numbering in a
projective resolution P• is defined by Pi := P−i.

Proposition 5.8.15. Let G be a group, and let P• be a complex of G-modules which is a
projective resolution of the trivial G-module Z. Then P• ⊗ P• is a projective resolution of the
trivial Z[G×G]-module Z.

Here the terms of P• ⊗ P• are endowed by a G×G-action coming from

(g1, g2)(p1 ⊗ p2) = g1.p1 ⊗ g2.p2
The proof is based on the following lemma. Recall that a complex A• is called acyclic or exact,
if H i(A•) = 0 for all i.

Lemma 5.8.16. Let A• and B• be complexes of free abelian groups. Then the following holds.

(1) A• ⊗B• is again a complex of free abelian groups.

(2) If A• and B• are acyclic, then so is the complex A• ⊗B•.
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(3) If A• and B• are concentrated in nonpositive degree, acyclic in negative degrees and
having a free abelian group as 0-cohomology, then so is the complex A• ⊗ B•, and in
addition

H0(A• ⊗B•) ' H0(A•)⊗H0(B•).

Proof. (1): As tensor products and direct sums of free abelian groups are again free, it
follows that the terms of A• ⊗B• are free abelian.

(2): The proof of acyclicity is based on the fact that a subgroup of a free abelian group is again
free. This implies that for all i, the subgroups Bi(A•) are free, and in particular projective.
For all i we have the exact sequence

0→ Zi(A•)→ Ai → Bi+1(A•)→ 0,

the terms being free abelian groups. Hence the sequence splits. Moreover, we have Zi(A•) =
Bi(A•) by the acyclicity of A•. Therefore we may rewrite the above exact sequence as

0→ Bi(A•)
id−→ Bi(A•)⊕Bi+1(A•)

(0,id)−−−→ Bi+1(A•)→ 0.

Hence the complex A• decomposes as an infinite direct sum of complexes of the shape

· · · → 0→ 0→ A
id−→ A→ 0→ 0→ · · ·

and similarly, the complex B• decomposes as a direct sum of complexes

· · · → 0→ 0→ B
id−→ B → 0→ 0→ · · ·

The construction of tensor products of complexes commutes with arbitrary direct sums. Hence
we are reduced to check acyclicity for the tensor product of complexes of the above type. But
by definition, these are complexes of the form

· · · → 0→ 0→ A⊗B (id,± id)−−−−→ (A⊗B)⊕ (A⊗B)
(0,± id)−−−−→ A⊗B → 0→ 0→ · · ·

Therefore the claim follows.

(3): The proof goes along the same lines as for (2), and the description of the 0-cohomology
follows from the right exactness of the tensor product. �

Proof of Proposition 5.8.15: By definition, the Pi are direct summands in some free G-
module, which is in particular a free abelian group, so they are also free abelian groups. Hence
we can use (3) of lemma 5.8.16, and we are done if we show that the terms of P• ⊗ P• are
projective as Z[G×G]-modules. For this, notice first the canonical isomorphism

Z[G×G] ' Z[G]⊗Z Z[G] :

indeed, both abelian groups are free on a basis corresponding to pairs of elements in G. Taking
direct sums we obtain that tensor products of free Z[G]-modules are free Z[G×G]-modules with
the above G×G-action. If Pi resp. Pj are projective Z[G]-modules with a direct complement
Qi resp. Qj in some free Z[G]-module, then the isomorphism

(Pi ⊕Qi)⊗ (Pj ⊕Qj) ' (Pi ⊗ Pj)⊕ (Pi ⊗Qj)⊕ (Qi ⊗ Pj)⊕ (Qi ⊗Qj)

shows that Pi ⊗ Pj is a direct summand in a free Z[G×G]-module, and hence it is projective.
Then the projectivity of the terms of P• ⊗ P• follows. �

Putting everything together, we can finally construct the cup-product.
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Third step: Let A and B be G-modules, and P• be a projective resolution of the trivial
G-module Z. Applying the second step with A• = B• = P• we obtain maps

H i(Hom(P•, A))×Hj(Hom(P•, B))→ H i+j(P• ⊗ P•, A⊗B)).

By proposition 5.8.15, the complex P• ⊗ P• is a projective resolution of Z as a G×G-module.
Hence using the definition of cohomology via projective resolutions we may rewrite the above
maps as

H i(G,A)×Hj(G,B)→ H i+j(G×G,A⊗B).

On the other hand, the diagonal embedding G→ G×G induces a restriction map

Res : H i+j(G×G,A⊗B)→ H i+j(G,A⊗B).

Composing the two maps we finally obtain an operation

H i(G,A)×Hj(G,B)→ H i+j(G,A⊗B),

(a, b) 7→ a ∪ b.

which we call the cup-product map.
One may check that this construction does not depend on the chosen projective resolution P•.

Remark 5.8.17. The construction is functorial in the following sense. For a given morphism
A→ A′ of G-modules the diagram

H i(G,A)×Hj(G,B)

��

// H i+j(G,A⊗B)

��
H i(G,A′)×Hj(G,B) // H i+j(G,A′ ⊗B)

commutes. Similarly such a diagram for the second variable commutes.

Remark 5.8.18. For i = j = 0 the cup-product map

H0(G,A)×H0(G,B)→ H0(G,A⊗B)

is just the natural map AG ⊗ BG → (A ⊗ B)G. This follows from the construction of the
cup-product.

Remark 5.8.19. There is the following generalization of a cup-product, usually again de-
noted as cup-product. For a given morphism A×B → C of G-modules we obtain pairings

H i(G,A)×Hj(G,B)→ H i+j(G,C)

by composing the cup-product with the natural map

H i+j(G,A⊗B)→ H i+j(G,C).

Proposition 5.8.20. The cup-product is associative and graded-commutative.

Proof. We leave it to the reader to check associativity. One has to follow carefully the
construction. It ultimately boils down to the associativity of the tensor product.
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For graded-commutativity, we first work on the level of tensor products of complexes and
compare the images of the obvious maps

Ai ⊗Bj →
⊕

k+l=i+j

Ak ⊗Bl,

Bj ⊗ Ai →
⊕

k+l=i+j

Bl ⊗ Ak

in the complexes A• ⊗B• and B• ⊗A• respectively. Given a⊗ b ∈ Ai ⊗Bj, the differential in
A• ⊗B• acts on it by

∂iA ⊗ idB +(−1)i idA⊗∂jB,
whereas the differential in B• ⊗ A• acts on b⊗ a ∈ Bj ⊗ Ai by

∂jB ⊗ idA +(−1)j idB ⊗∂iA.

Therefore mapping a⊗b to (−1)ij(b⊗a) induces an isomorphism of complexes A•⊗B• ' B•⊗A•.
Applying this with A• = B• = P• and performing the rest of the construction of the cup-
product, we obtain that both elements a ∪ b and (−1)ij(b ∪ a) are mapped, via the above
isomorphism, to the same element in H i+j(G,A⊗B). �

The following exactness property holds for the cup-product.

Proposition 5.8.21. Given an short exact sequence of G-modules

0→ A1 → A2 → A3 → 0(5.14)

with the property that the tensor product over Z with a G-module B remains exact, i.e., such
that

0→ A1 ⊗B → A2 ⊗B → A3 ⊗B → 0(5.15)

is again exact, we have for all elements a ∈ H i(G,A3) and b ∈ Hj(G,B) the relation

δ(a) ∪ b = δ(a ∪ b)

in H i+j+1(G,A1 ⊗ B), where the δ are the connecting maps in the associated long sequence of
cohomology.
Similarly, if

0→ B1 → B2 → B3 → 0

is a short exact sequence of G-modules such that the tensor product over Z

0→ A⊗B1 → A⊗B2 → A⊗B3 → 0

with a G-module A remains exact, we have for all elements a ∈ H i(G,A) and b ∈ Hj(G,B3)
the relation

a ∪ δ(b) = (−1)iδ(a ∪ b)
in H i+j+1(G,A⊗B1).

Proof. For the first statement, fix an element b ∈ Hj(G,B). Take a projective resolution
P• of the trivial G-module Z and consider the sequences

0→ Hom(P•, A1)→ Hom(P•, A2)→ Hom(P•, A3)→ 0(5.16)
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and

0→ Hom(P• ⊗ P•, A1 ⊗B)→ Hom(P• ⊗ P•, A2 ⊗B)(5.17)

→ Hom(P• ⊗ P•, A3 ⊗B)→ 0.

These are exact sequences of complexes because of the projectivity of the Pi and the exactness
of the sequences (5.14) and (5.15). Lifting b to an element β ∈ Hom(Pj, B) and tensor product
with β yields maps

Hom(Pj, Ak)→ Hom(Pi ⊗ Pj, Ak ⊗B)

for k = 1, 2, 3. Hence proceeding as in the second step of the cup-product construction we obtain
maps form the terms in the sequence (5.16) to those of the sequence (5.17), increasing degrees
by j, giving rise to a commutative diagram by functoriality of the cup-product construction.
The connecting maps δ are obtained by applying the so called snake lemma to the above
sequences - we leave out the details. Finally one obtains the first statement by following the
image of an element a ∈ H i(G,A) by using the above mentioned commutativity. Let us say,
that the proof of the second statement is similar, except that one has to replace the differentials
in the complexes Hom•(P•, Bk) by their multiples by (−1)i in order to obtain a commutative
diagram, by virtue of the sign convention we have taken in the first step of the cup-product
construction. �

Let H be a subgroup of G of finite index, and let A be a G-module. We mention briefly the
so called correstriction maps

Cor: H i(H,A)→ H i(G,A), i ≥ 0

which are given by taking cohomology and applying Shapiro’s lemma. It satisfies the following
property.

Proposition 5.8.22. Let H be a subgroup of G of finite index n ≥ 1, and let A be a
G-module. Then the composite maps

Cor ◦ Res: H i(G,A)→ H i(G,A)

are given by multiplication by n for all i ≥ 0.

Given a subgroupH ofG, perhaps a normal subgroup, or a subgroup of finite index if needed,
the cup-product satisfies the following compatibility relations with the associated restriction
maps, inflation maps and corestriction maps.

Proposition 5.8.23. For given G-modules A and B we have the following relations.

(1) For a ∈ H i(G,A) and b ∈ Hj(G,B) we have

Res(a ∪ b) = Res(a) ∪ Res(b).

(2) If H is normal in G, a ∈ H i(G/H,AH) and b ∈ Hj(G/H,BH), then we have

Inf(a ∪ b) = Inf(a) ∪ Inf(b).

(3) Let H be a subgroup of G of finite index. Then for a ∈ H i(H,A) and b ∈ Hj(G,B)
we have

Cor(a ∪ Res(b)) = Cor(a) ∪ b.
This is called the “projection formula”.
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Proof. According to the definition of restriction maps, (1) follows by performing the cup-
product construction for the modules

IndGH(A) = HomH(Z[G], A)

IndGH(B) = HomH(Z[G], B),

and using the functoriality of the construction for the natural maps A → IndGH(A) and B →
IndGH(B).
Similarly, (2) follows by performing the cup-product construction simultaneously for the projec-
tive resolutions P• and Q• considered in the definition of inflation maps (a projective resolution
P• of Z as a trivial G-module and a projective resolution Q• of Z as a trivial G/H-module),
and using functoriality.
For (3), consider the diagram

HomH(Z[G], A)

��

× HomH(Z[G], B) // HomH×H(Z[G×G], A⊗B)

��
HomG(Z[G], A) × HomG(Z[G], B)

OO

// HomG×G(Z[G×G], A⊗B)

where the horizontal maps are induced by the tensor product, the middle vertical map upwards
is the one inducing the restriction and the two others are those inducing the correstriction maps.
The diagram is “commutative” in the sense that starting form elements in HomH(Z[G], A) and
HomG(Z[G], B) we obtain the same elements in HomG×G(Z[G × G], A ⊗ B) by going through
the diagram in the two possible ways; this follows from the definition of the maps. The claim
then again follows by performing the cup-product construction for the pairings of the two rows
of the diagram and using functoriality. �
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