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Abstract. This survey on crystallographic groups, geometric structures on Lie groups and
associated algebraic structures is based on a lecture given in the Ostrava research seminar in
2017.
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1. Introduction

Crystallographic groups and crystallographic actions already have a long history. They were
studied more than hundred years ago as the symmetry groups of crystals in three-dimensional
Euclidean space and as wallpaper groups in two-dimensional Euclidean space. Such groups
are discrete and cocompact subgroups of the group of isometries of a Euclidean space. After
Hilbert asked in 1900 about Euclidean crystallographic groups in his 18th problem, Bieberbach
solved this question in 1910. Since then Euclidean crystallographic structures are quite well
understood, and several other types of crystallographic structures have been considered, such
as almost-crystallographic and affine crystallographic structures. For the affine case it was
expected that the results from the Euclidean case should generalize in a straightforward manner.
This, however, turned out to be not the case. The Bieberbach theorems do not hold. In
particular, groups admitting an affine crystallographic action need not be virtually abelian.
However, it was conjectured that such groups are virtually polycyclic. This became known as
Auslander’s conjecture. J. Milnor proved several results on affine crystallographic actions in
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his fundamental paper [47] in 1977. See also the discussion in [41] by W. M. Goldman. This
resulted in an active research on affine crystallographic actions and more generally on nil-affine
crystallographic actions until today. We want to give a survey on these developments and state
some results which we have obtained in this context. An important step here is to be able to
formulate the problems on the level of Lie algebras and in terms of pre-Lie algebra and post-Lie
algebra structures.
This survey is by no means complete and there are several other interesting results in this area,
which we do not mention.

2. Euclidean crystallographic actions

Let E(n) denote the isometry group of the Euclidean space Rn. This group is given by
matrices as follows,

E(n) =

{(
A v
0 1

)
| A ∈ On(R), v ∈ Rn

}
.

The multiplication is the usual matrix multiplication(
A v
0 1

)(
B w
0 1

)
=

(
AB Aw + v
0 1

)
.

The translations form a normal subgroup of E(n), given by

T (n) =

{(
En v
0 1

)
| v ∈ Rn

}
.

In particular we have E(n) ∼= On(R) n T (n) ∼= On(R) nRn. The group E(n) acts on Rn by(
A b
0 1

)(
v
1

)
=

(
Av + b

1

)
.

More generally, the affine group of the Euclidean space Rn, denoted by A(n), is given as follows

A(n) =

{(
A v
0 1

)
| A ∈ GLn(R), v ∈ Rn

}
.

We will use the following definition of an Euclidean crystallographic group (ECG), which can
be found in [4], section 1.

Definition 2.1. A Euclidean crystallographic group Γ is a subgroup of E(n) which is discrete
and cocompact, i.e., has compact quotient Rn/Γ.

Let Γ be an ECG. Then Γ acts properly discontinuously on Rn, i.e., for all compact sets
K ⊆ Rn the set of returns

{γ ∈ Γ | γK ∩K 6= ∅}
is finite.

Definition 2.2. Let Γ be a group acting on Rn via a homomorphism

ρ : Γ→ E(n).

The action is called a crystallographic action, if Γ acts properly discontinuously on Rn and the
orbit space Rn/Γ is compact, i.e., Γ acts cocompactly.

Example 2.3. The group Γ = Zn acts crystallographically on Rn by translations.
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A homomorphism ρ : Γ→ E(n) determines a crystallographic action if and only if the kernel
of ρ is finite, and the image of ρ is a crystallographic group.

As already said, the study of ECGs has a long history. ECGs in dimension 2 are the 17
wallpaper groups, which have been known for several centuries. However the proof that the list
was complete was only given in 1891 by Fedorov, after the much more difficult classification in
dimension 3 had been completed by Fedorov and independently by Schönflies in 1891. There
are 219 distinct ECGs in dimension 3. All of them are realized as symmetry groups of genuine
crystals. Hilbert published in 1900 his famous 23 problems [44]. In the first part of the 18th
problem he asked, whether there are only finitely many different crystallographic groups in any
dimension. This was answered affirmatively by Bieberbach [9, 10] in 1910. His theorems are
usually stated as follows.

Proposition 2.4 (Bieberbach 1). Let Γ ≤ E(n) be an Euclidean crystallographic group. Then
Γ contains the translation subgroup Zn as a normal subgroup with finite quotient F = Γ/Zn.

Proposition 2.5 (Bieberbach 2). Two Euclidean crystallographic groups in dimension n are
isomorphic if and only if they are conjugated in the affine group A(n) ∼= GLn(R) nRn.

Proposition 2.6 (Bieberbach 3). In each dimension there are only finitely many Euclidean
crystallographic groups.

Let Γ ≤ E(n) be an ECG. By the first Bieberbach Theorem, the translation subgroup is an
abelian subgroup of finite index, isomorphic to the full lattice Zn in Rn. Hence we have a short
exact sequence

1→ Zn → Γ→ F → 1

with a finite group F ∼= Γ/Zn acting by conjugation of Zn. We obtain a faithful representation

F ↪→ Aut(Zn) = GLn(Z),

so that we may consider F as a finite subgroup in GLn(Z) up to conjugation. Now GLn(Z)
has only finitely many conjugacy classes of finite subgroups. This was first shown by Jordan,
then by Zassenhaus and more generally later by Harish-Chandra for arithmetic groups. Hence
we have only finitely many such groups F up to isomorphism with given action of F on Zn.
Furthermore there are only finitely many inequivalent extensions 1→ Zn → Γ→ F → 1, since
the extension classes are classified by the group

H2(F,Zn) ∼= H1(F,Qn/Zn),

which is discrete and compact, hence finite. This yields Bieberbach’s third Theorem.

Zassenhaus [55] showed that every ECG arises as an exact sequence as above and gave an
algorithm yielding the n-dimensional ECGs up to affine equivalence, given the finitely many
conjugacy classes of finite subgroups F in GLn(Z) together with their normalizers.

Proposition 2.7. For a given finite group F ≤ GLn(Z) the isomorphism classes of crystallo-
graphic groups Γ with conjugacy class represented by F are in bijection with the orbits of the
normalizer NGLn(Z)(F ) on the finite group H2(F,Zn).

In 1978 the classification in dimension 4 was achieved in [12].

Proposition 2.8 (Zassenhaus et al. 1978). There are exactly 4783 different crystallographic
groups in four-dimensional space R4.
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In 2000 Plesken and Schulz [48] classified all ECGs in dimension 5 and 6. There are 222018
different ECGs in dimension 5 and 28927922 different ECGs in dimension 6.

Example 2.9. The group GL2(Z) has exactly 13 different conjugacy classes of finite subgroups,
called arithmetic ornament classes. Zassenhaus’ algorithm yields 17 ECGs up to isomorphism.

It is easy to see that the 13 arithmetic ornament classes are given as follows:

C1
∼=
〈(

1 0
0 1

)〉
, C2

∼=
〈(
−1 0
0 −1

)〉
, C3

∼=
〈(

0 1
−1 −1

)〉
, C4

∼=
〈(

0 1
−1 0

)〉
,

C6
∼=
〈(

0 1
−1 1

)〉
, D1

∼=
〈(

1 0
0 −1

)〉
, D1

∼=
〈(

0 1
1 0

)〉
, D2

∼=
〈(

1 0
0 −1

)
,

(
−1 0
0 −1

)〉
,

D2
∼=
〈(

0 1
1 0

)
,

(
−1 0
0 −1

)〉
, D3

∼=
〈(

0 1
1 0

)
,

(
0 1
−1 −1

)〉
, D3

∼=
〈(

0 −1
−1 0

)
,

(
0 1
−1 −1

)〉
,

D4
∼=
〈(

0 1
1 0

)
,

(
0 1
−1 0

)〉
, D6

∼=
〈(

0 1
1 0

)
,

(
0 1
−1 1

)〉
.

The groups are isomorphic to one of the cyclic groups C1, C2, C3, C4, C6, or one of the dihedral
groups D1, D2, D3, D4, D6. The conjugacy classes are finer than the isomorphism classes. The
indices 1, 2, 3, 4, 6 are no coincidence here. An element A ∈ GL2(Z) of finite order has one of the
orders 1, 2, 3, 4, 6. Indeed, if there is an element A ∈ GL2(Z) of order n, then ϕ(n), the degree
of the irreducible cyclotomic polynomial Φn divides 2 by Cayley-Hamilton. But ϕ(n) | 2 is
equivalent to n = 1, 2, 3, 4, 6. The wallpaper groups Γ arise from these 13 arithmetic ornament
classes by equivalence classes of extensions 1 → Z2 → Γ → F → 1, determined by H2(F,Z2).
For each of these classes we can compute this group. In case that H2(F,Z2) = 0 the ornament
class just yields one extension. This happens in 10 cases. In the other three cases H2(F,Z2) is
isomorphic to Z/2, Z/2 and Z/2×Z/2 respectively. This yields 2+2+4 = 8 further extensions.
Altogether we obtain 18 inequivalent extensions leading to 17 different groups.

Remark 2.10. Denote by c(n) the number of different ECGs in E(n). Peter Buser [36] showed
in 1985, using Gromov’s work on almost flat manifolds, the estimate

c(n) ≤ ee
4n2

.

This bound seems to be not yet optimal, but I haven’t found better estimates. Schwarzenberger
[49] has shown that c(n) grows at least as fast as 2n

2
and conjectured that this is the exact

asymptotic result. This seems to be still open.

By Bieberbach’s first Theorem the translation group of an ECG is an abelian subgroup of
finite index. Hence every ECG is virtually abelian. We can reformulate the structure results
by Bieberbach as follows.

Proposition 2.11. The groups admitting a Euclidean crystallographic action are precisely the
finitely generated virtually abelian groups. For a given group the crystallographic action is
unique up to affine conjugation.

Definition 2.12. An Euclidean crystallographic group Γ ≤ E(n) is called a Bieberbach group,
if it is torsionfree, i.e., if it acts freely on Rn.

If M = Rn/Γ is a compact complete connected flat Riemannian manifold, then its funda-
mental group π1(M) ∼= Γ is a Bieberbach group. Conversely, every flat complete Riemannian



CRYSTALLOGRAPHIC ACTIONS 5

manifold M is the quotient Rn/Γ for a subgroup Γ ≤ E(n) acting freely and properly dis-
continuously on Rn. This shows the geometric importance of Bieberbach groups. Among the
17 wallpaper groups, there are just 2 Bieberbach groups, namely the fundamental groups of
the torus and of the Klein bottle. Among the 219 space groups there are only 10 Bieberbach
groups. In dimension 4, 5, 6 we have 74, 1060, 38746 Bieberbach groups respectively, so also
these numbers grow rapidly.

3. Hyperbolic and spherical crystallographic actions

ECGs have been generalized to non-Euclidean crystallographic groups, namely to spherical
and hyperbolic crystallographic groups. We will shortly explain the notions and give a few
examples, but we will not attempt to give a survey. Let X be a space of constant curvature κ,
i.e., a simply-connected complete Riemannian manifold of constant curvature κ up to scaling,
together with its isometry group G = Iso(X). Any space of constant curvature is isomorphic
to either the Euclidean space (En, On(R)nRn) with κ = 0, or to the sphere (Sn, On+1(R)) with
κ = 1, or to the hyperbolic space (Hn, O+(n, 1)) with κ = −1. Here O+(n, 1) is the index 2
subgroup of O(n, 1) preserving the two connected components of {A ∈ Rn+1 | 〈A,A〉 = −1},
where 〈A,B〉 denotes the standard Lorentzian form on Rn+1. Then Definition 2.1 is generalized
as follows.

Definition 3.1. Let (X,G) be a space of constant curvature. A subgroup Γ ≤ G = Iso(X) is
called a crystallographic group, or CG, if Γ is discrete and X/Γ has finite volume.

Any discrete subgroup Γ ≤ Iso(X) has a convex fundamental domain. So for an ECG
any fundamental domain is bounded since any unbounded convex domain in Euclidean space
has infinite volume. Hence any CG in En is cocompact and thus an ECG. This shows that
both definitions coincide for ECGs. Any CG in Sn is a discrete subgroup of a compact group
On+1(R) and hence finite. So spherical CRs are finite subgroups of On+1(R). For small n, all
finite subgroups of On+1(R) are classified. For example, any finite subgroup of O2(R) is either
cyclic or dihedral. For higher n this is not the case. A special case of the Margulis lemma
implies that for each n, there is a positive integer m(n) such that any finite subgroup of On(R)
has an abelian subgroup of index m(n), see Corollary 4.2.4 of Thurston’s book [51]. The most
interesting case of non-Euclidean CGs is the hyperbolic case. Already in dimension 2 there is
a continuum of CGs, even of cocompact ones. The latter arise as fundamental groups of closed
surfaces of genus g > 1. Their totality can be described via Teichmüller theory.

Example 3.2. Let X = H2 be the upper half-plane, G = Iso(X) ∼= PSL2(R) and Γ be the
modular group consisting of transformations of the form

z 7→ az + b

cz + d
,

(
a b
c d

)
∈ SL2(Z)

Then Γ is a non-cocompact hyperbolic CG with vol(H2/Γ) = π
3
.

Another example is given by Bianchi groups.

Example 3.3. Let d be a positive squarefree integer and K = Q(
√
−d) an imaginary-quadratic

number field. Denote by Od its ring of integers in K. Let Γ(d) = PSL2(Od) ⊂ PSL2(C). Then
Γ(d) is a discrete subgroup of Iso(H3), called a Bianchi group. It is a non-compact hyperbolic
CG.



6 D. BURDE

In fact, the covolume of Γ(d) is given by

vol(H3/Γ(d)) =
|dK |3/2

4π2
ζK(2),

where dK denotes the discriminant of K and ζK(s) denotes the Dedekind zeta function of the
base field K = Q(

√
−d).

There is a general method of constructing arithmetic discrete subgroups of semisimple Lie
groups due to Margulis. On the other hand, there exist also non-arithmetic hyperbolic CGs in
any dimension [42]. By Mostow rigidity, any isomorphism of hyperbolic CGs in Hn for n ≥ 3
is induced by a conjugation in the group Iso(Hn). This is far from being true for n = 2, see
above. An important numerical invariant of a hyperbolic CG is its covolume

v(Γ) = vol(Hn/Γ).

For n ≥ 4 the set of covolumes is discrete and for n = 3 it is a non-discrete closed well-ordered
set of order-type ωω, where each point has finite multiplicity. The covolumes are bounded from
below by a positive constant depending only on n. There is much more to say for this section,
in particular we should mention the classical work of E. Vinberg concerning hyperbolic CGs
and hyperbolic reflections groups. The references can be found in the book [54]. We will finish
this section by referring to related topics such as lattices in Lie groups, Fuchsian groups and
Kleinian groups. A Fuchsian group is a discrete subgroup of PSL2(R) and a Kleinian group is
a discrete subgroup of PSL2(C).

4. Affine and nil-affine crystallographic actions

We are mainly interested in this survey in another generalization of Euclidean crystallographic
groups, namely in affine and nil-affine crystallographic groups. Let X be a locally compact
topological Hausdorff space and G the group of homeomorphisms of X.

Definition 4.1. A subgroup Γ of G is called crystallographic, if G acts properly discontinuously
and cocompactly on X. A continuous action of a group Γ on X is called a crystallographic
action, if it is properly discontinuous and cocompact.

For X being the affine space An and G = A(n), a crystallographic group Γ is called an
ACG, an affine crystallographic group. For X = En, a group Γ ≤ G = E(n) acts properly
discontinuously on X if and only if Γ is discrete. In general acting properly discontinuously
is stronger than being discrete. The group A(n) is a generalization of the Euclidean isometry
group E(n) as we have seen in section 2 in the context of the Bieberbach theorems. As in the
Euclidean case, torisonfree ACGs arise as fundamental groups of flat manifolds, i.e., of complete
compact affinely flat manifolds. A natural question in this context is whether the Bieberbach
theorems hold for ACGs. Looking at some examples it is clear that this is not the case.

Example 4.2. Let k be a fixed integer. The group

Γk =

{
1 kc 0 ka
0 1 0 kb
0 0 1 kc
0 0 0 1

 | a, b, c ∈ Z

}
≤ A(3)
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is a 3-dimensional ACG, which is not virtually abelian. Because of

Γk/[Γk,Γk] ∼= Z2 ⊕ Z/kZ
two groups Γk and Γk′ are isomorphic if and only if k = k′. Hence there are infinitely many
different ACGs in dimension 3.

Indeed, every abelian subgroup of finite index in Γk would necessarily be isomorphic to Z3,
but is is easy to see that Γk does not contain such a subgroup. So ACGs need not be virtually
abelian. On the other hand, all such examples are virtually solvable and then, being a discrete
solvable subgroup of a Lie group with finitely many components, already virtually polycyclic.
Is this a possible generalization of Bieberbach’s First Theorem, i.e., is it true that every ACG is
virtually polycyclic? In other words, is the fundamental group of every complete compact affine
manifold virtually polycylic? L. Auslander studied this problem and published a paper [4] in
1964 stating an even more general result, namely that the fundamental group of every complete
affine manifold is virtually polycyclic, without the compactness assumption. Unfortunately his
proof was in error. Nevertheless the statement later on became widely known as the Auslander
conjecture:

Conjecture 4.3 (Auslander). Every ACG is virtually polycyclic.

The history of this conjecture is as follows. In 1977 J. Milnor studied the fundamental
groups of flat affine manifolds in his famous paper [47]. He proved that every torsion-free
virtually polycyclic group can be realized as the fundamental group of some complete flat
affine manifold. Then he conjectured also the converse, namely Auslander’s statement that
the fundamental group of every complete flat affine manifold is virtually polycyclic. However,
Margulis [46] found a counterexample in dimension 3.

Proposition 4.4 (Margulis). There exists non-compact complete affine manifolds in dimension
3 with a free non-abelian fundamental group of rank 2.

A free non-abelian group cannot be virtually polycyclic. So it is clear that one needs the
compactness assumption and Auslander’s original claim cannot hold. This led to the formula-
tion of the Auslander conjecture in terms of affine crystallographic groups.
Auslander’s conjecture is still open, although many special cases are known. Fried and Gold-
man proved the conjecture in 1983 in dimension n ≤ 3. Tomanov [52] proved it in 2016 for
n ≤ 5 and Abels, Margulis and Soifer [1] have worked on several cases for many years. In 2005
they showed that every crystallographic subgroup Γ ≤ A(n + 2) with linear part contained in
O(n, 2) is virtually polycyclic [2]. They had a proof for Auslander’s conjecture in dimension 6
available on the arXiv. However, they have withdrawn it now.

In his paper [47] Milnor also asked the following important question.

Question 4.5 (Milnor 1977). Does every virtually polycyclic group admit an affine crystallo-
graphic action?

Actually, the original question uses the terminology of left-invariant affine structures on Lie
groups, see section 6. Because of some positive evidence this question was also sometimes called
the Milnor conjecture. A positive answer for both Milnor and Auslander would give a very nice
algebraic description of the class of groups admitting an affine crystallographic action. In fact,
then this class would be precisely the class of virtually polycyclic groups and we would have
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a perfect analogue to Proposition 2.11 concerning the Euclidean case. Moreover, it is known
that an affine crystallographic action of a virtually polycyclic group is unique up to conjugation
with a polynomial diffeomorphism of Rn.
However, Y. Benoist found a counterexample to Milnor’s conjecture in [11] and we provided
families of counterexamples in [14, 16]. The counterexamples in [16] are torsion-free nilpotent
groups of Hirsch length 11 and nilpotency class 10 not admitting an affine crystallographic
action. Hence one needs to replace A(n) by a larger group for such a correspondence to hold.
Indeed, other alternatives have been proposed. First it was shown that the group P (n) of
polynomial diffeomorphisms of Rn is a possible alternative. In [37] it was shown that any virtu-
ally polycyclic group admits a polynomial crystallographic action of bounded degree. However,
this group appears to be too large and does not have such a geometric meaning as E(n) and
A(n) have. A more natural generalization of A(n) = Aff(Rn) turned out to be the group
Aff(N) = Aut(N) n N , the group of nil-affine transformations, in this context. Here N de-
notes a connected and simply-connected nilpotent Lie group. For the abelian Lie group N = Rn

we recover the group A(n). We repeat the definition of a crystallographic action for Aut(N).

Definition 4.6. A nil-affine crystallographic action consists of a representation ρ : Γ→ Aff(N)
for some connected and simply connected nilpotent Lie group N letting ρ act properly discon-
tinuously and cocompactly on N . The image ρ(Γ) of such an nil-affine crystallographic action
will be referred to as an nil-affine crystallographic group.

In 2003 K. Dekimpe showed the following result in [38].

Proposition 4.7. Every virtually polycyclic group Γ admits a nil-affine crystallographic action
ρ : Γ→ Aff(N). This action is unique up to conjugation inside of Aff(N).

It is now also natural to ask for the converse, i.e., to ask for the Auslander conjecture for
nil-affine crystallographic groups.

Conjecture 4.8 (Generalized Auslander). Let N be a connected and simply connected nilpotent
Lie group and let Γ ⊆ Aff(N) be a group acting crystallographically on N . Then Γ is virtually
polycyclic.

If this conjecture has a positive answer, then we have an analogue of Proposition 2.11 for nil-
affine crystallographic actions. Then the groups admitting a nil-affine crystallographic action
would be precisely the virtually polycyclic groups.

We have shown in [18] that the generalized Auslander conjecture is true for n ≤ 5 and that it
can be reduced to the ordinary Auslander conjecture in case N is 2-step nilpotent.

5. Simply transitive groups of affine and nil-affine transformations

Affine and nil-affine crystallographic actions of discrete groups are closely related to simply
transitive actions by affine and nil-affine transformations of Lie groups.

Definition 5.1. A group G acts simply transitively on Rn by affine transformations if there
is a homomorphism ρ : G → A(n) letting G act on Rn, such that for all y1, y2 ∈ Rn there is a
unique g ∈ G such that ρ(g)(y1) = y2.

Such groups are connected and simply connected n-dimensional Lie groups which are home-
omorphic to Rn. L. Auslander named such groups simply transitive groups of affine motions.
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He proved that such groups are solvable [5]. We mention the following generalization of this
result.

Proposition 5.2. Let G be a Lie group which is homeomorphic to Rn for some n ≥ 1. If G
admits a faithful linear representation then G is solvable.

Proof. Let G be a connected Lie group. By a theorem of Malcev and Iwasawa, G is homeo-
morphic to C ×Rk for some k, where C is the maximal compact subgroup of G. If we assume
that G is homeomorphic to Rn then it follows that G has no nontrivial compact subgroup.
Since G has a faithful linear representation, it is the semidirect product BnH with a reductive
group H and a simply connected solvable group B, which is normal in G. This reduces the
proof to the case where G is reductive. We have to show that our group is trivial then.
A reductive group G having a faithful linear representation has a compact center Z with
semisimple quotient G/Z. So we may assume that G is semisimple and has trivial center.
A semisimple group G with trivial center is analytically isomorphic to its adjoint group and
hence has a non-trivial compact subgroup unless G is trivial. But since our G has no nontrivial
compact subgroup it is trivial. �

Let us explain the connection between crystallographic actions of a discrete group and simply
transitive actions of a Lie group. If G is a solvable Lie group admitting a simply transitively
action by affine transformations on Rn, then a cocompact lattice Γ in G admits an affine crystal-
lographic action. Conversely, if a torsionfree nilpotent group Γ admits an affine crystallographic
action via ρ : Γ→ A(n), then ρ(Γ) is unipotent. Hence its Malcev completion GΓ is inside A(n),
and acts simply transitively by affine transformations. We have the following result.

Proposition 5.3. There is a bijective correspondence between affine crystallographic actions
of a finitely generated torsionfree nilpotent group Γ and simply transitive actions by affine
transformations of its Malcev completion GΓ.

This generalizes to nil-affine crystallographic actions. We say that G admits a simply tran-
sitively action by nil-affine transformations on N , if there is a homomorphism ρ : G→ Aff(N)
letting G act simply transitively on N .

6. Left-invariant affine structures on Lie groups

Milnor formulated his question 4.5 in terms of left-invariant affine structures on Lie groups.
We follow here his article [47].

Definition 6.1. An affine structure (or affinely flat structure) on an n-dimensional manifold
M is a collection of coordinate homeomorphisms

fα : Uα → Vα ⊆ Rn,

where the Uα are open sets coveringM , and the Vα are open subsets of Rn; whenever Uα∩Uβ 6= ∅,
it is required that the change of coordinate homeomorphism

fβf
−1
α : fα(Uα ∩ Uβ)→ fβ(Uα ∩ Uβ)

extends to an affine transformation in A(n) = Aff(Rn). We call M together with this structure
an affine manifold, or an affinely flat manifold.
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A special case of affinely flat manifolds are Riemannian-flat manifolds, where the coordinate
changes extend to isometries in E(n), i.e., to affine transformations x 7→ Ax+b with A ∈ On(R).
For surfaces we have the following result by Benzecri [8].

Proposition 6.2. A closed surface admits an affine structure if and only if its Euler charac-
teristic vanishes.

In particular, a closed surface different from the 2-torus or the Klein bottle does not admit
any affine structure.

Definition 6.3. An affine structure on a Lie group G is called left-invariant if each left-
multiplication map L(g) : G→ G is an affine diffeomorphism.

Definition 6.4. An affine structure on G is called complete, if the universal covering G̃ is
affinely diffeomorphic to Rn.

Proposition 6.5. There is a canonical bijection between left-invariant complete affine struc-
tures on G and simply transitive actions of G on Rn by affine motions.

If G admits a left-invariant complete affine structure, then for any discrete group Γ the coset
space G/Γ is a complete affinely flat manifold with fundamental group isomorphic to Γ.

Here is Milnor’s question in the original context.

Question 6.6 (Milnor 1977). Does every solvable n-dimensional Lie group G admit a complete

left-invariant affine structure, or equivalently, does the universal covering group G̃ act simply
transitively by affine transformations on Rn ?

Milnor remarked that the answer is positive for 2-step nilpotent and 3-step nilpotent Lie
groups and for Lie groups whose Lie algebra admits a non-singular derivation. Such Lie algebras
are necessarily nilpotent. Furthermore the answer is positive for all connected and simply
connected complex nilpotent Lie groups of dimension n ≤ 7. However, as we have mentioned
above, Benoist gave a counterexample in [11] and we gave families of counterexamples in [14, 16].
The Lie algebras of all such counterexamples here are filiform nilpotent Lie algebras. One can
verify that all connected and simply-connected filiform nilpotent Lie groups of dimension n ≤ 9
admit a complete left-invariant affine structure. Hence the minimal dimension for this kind of
counterexamples is 10. The result in [16] is the following.

Proposition 6.7. There exist families of nilpotent Lie groups of dimension 10 and nilpotency
class 9 not admitting any left-invariant affine structure.

There are also families of such counterexamples in dimension 11, 12 and 13, but a general
result for all dimensions n ≥ 10 is only conjectured, see [21], but not known.

7. Pre-Lie algebra and post-Lie algebra structures

Several statements from the previous sections can be formulated on the level of Lie algebras
in terms of certain compatible algebraic structures on the Lie algebra of the corresponding Lie
group. In particular, Milnor’s question can be reduced to the level of Lie algebras, namely to
pre-Lie algebra structures on Lie algebras and to faithful finite-dimensional representations of
Lie algebras. All bijective correspondence mentioned are understood up to suitable equivalence
of the structures involved.
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Definition 7.1. A pre-Lie algebra (V, ·) is a vector space V equipped with a binary operation
(x, y) 7→ x · y such that for all x, y, z ∈ V

(x · y) · z − x · (y · z) = (y · x) · z − y · (x · z).

If (V, ·) is a pre-Lie algebra, then for x, y ∈ V the binary operation

[x, y] := x · y − y · x

defines a Lie algebra.

Definition 7.2. A bilinear product x · y on g× g is called a pre-Lie algebra structure on g, if
it satisfies

[x, y] = x · y − y · x,
[x, y] · z = x · (y · z)− y · (x · z),

for all x, y, z ∈ g. A Lie algebra g over a field K is said to admit a pre-Lie algebra structure, if
there exists a pre-Lie algebra structure on g.

Example 7.3. The Heisenberg Lie algebra n3(K) of dimension 3 with basis {e1, e2, e3} and Lie
brackets [e1, e2] = e3 admits a pre-Lie algebra structure, given by

e1 · e2 =
1

2
e3, e2 · e1 = −1

2
e3.

Denote by L(x) the left multiplication operator given by L(x)(y) = x · y. Then the second
identity becomes

L([x, y]) = [L(x), L(y)].

for all x, y ∈ g. Hence the left multiplication operators define a g-module gL by

L : g→ gl(g), x 7→ L(x).

Denote by I : g→ gL the identity map. Then the first identity becomes

I([x, y]) = I(x) · y − I(y) · x.

Hence the identity map is a 1-cocycle, i.e., I ∈ Z1(g, gL). We have the following result [13].

Proposition 7.4. Let g be a n-dimensional Lie algebra. Then g admits a pre-Lie algebra
structure if and only if there is a n-dimensional g-module M with nonsingular 1-cocycle in
Z1(g,M).

Example 7.5. Let g be a Lie algebra admitting a nonsingular derivation D. Then g admits a
pre-Lie algebra structure, given by

x · y = D−1([x,D(y)])

for all x, y ∈ g.

Jacobson [45] proved the following result in 1955.

Proposition 7.6. Let g be a Lie algebra over a field of characteristic zero admitting a nonsin-
gular derivation. Then g is nilpotent.



12 D. BURDE

This result does not hold for fields of prime characteristic p > 0. There are even simple
modular Lie algebras of nonclassical type admitting nonsingular derivations, see [7]. This is of
interest in the theory of pro-p groups of finite coclass.

In general a given Lie algebra need not admit a pre-Lie algebra structure.

Example 7.7. The Lie algebra sl2(K) over a field K of characteristic zero does not admit a
pre-Lie algebra structure.

More generally, we have the following result.

Proposition 7.8. Let g be a finite-dimensional semisimple Lie algebra over a field of charac-
teristic zero. Then g does not admit a pre-Lie algebra structure.

Proof. Let g be n-dimensional. Suppose that g admits a pre-Lie algebra structure. Then we
have I ∈ Z1(g, gL). By Whitehead’s first Lemma, I ∈ B1(g, gL). Hence there exists an e ∈ g
with R(e) = I, where R(x) denotes the right multiplication operator. The adjoint operators
ad(x) = L(x) − R(x) have trace zero, since g is perfect. So do all L(x) and hence all R(x).
Then we obtain n = tr(I) = tr(R(e)) = 0, a contradiction. �

Helmstetter [43] proved more generally that if g is perfect, i.e., if g = [g, g], then g does not
admit a pre-Lie algebra structure. We have the following canonical bijections (up to suitable
equivalence).

Proposition 7.9. There is a canonical bijection between left-invariant affine structures on G
and pre-Lie algebra structures on g.

Proposition 7.10. There is a canonical bijection between simply transitive affine actions of G
and complete pre-Lie algebra structures on g.

Here a pre-Lie algebra structure on g is complete, if all right multiplications R(x) in End(g)
are nilpotent. A left-invariant affine structure on G is complete if and only if the corresponding
pre-Lie algebra structure on the Lie algebra of G is complete, see [50]. Hence the algebraic
analogue of Milnor’s question is as follows.

Question 7.11 (Milnor 1977). Does every solvable Lie algebra over a field of characteristic
zero admit a (complete) pre-Lie algebra structure?

In the nilpotent case the different versions of Milnor’s question are equivalent. By Proposition
5.3 we obtain also a correspondence to affine crystallographic actions. The counterexamples
to Milnor’s question are given by n-dimensional nilpotent Lie algebras not admitting a faithful
linear representation of degree n+ 1. This is based on the following important observation, see
[11].

Proposition 7.12. Let g be a n-dimensional Lie algebra over a field K of characteristic zero.
Suppose that g admits a pre-Lie algebra structure. Then g admits a faithful linear Lie algebra
representation ϕ : g→ gln+1(K) of degree n+ 1.

This motivates to study a refinement of Ado’s theorem.

Definition 7.13. Let g be a finite-dimensional Lie algebra over a field K of dimension n.
Denote by µ(g) the minimal dimension of a faithful linear representation of g.
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By the Ado-Iwasawa theorem, µ(g) is always finite. However the proofs for Ado’s theorem
do not give good upper bounds for µ(g). The following result was proved in [17]. Here p(n)
denotes the partition function.

Theorem 7.14. Let g be a k-step nilpotent Lie algebra of dimension n over a field of charac-
teristic zero. Then we have

µ(g) ≤
k∑
j=0

(
n− j
k − j

)
p(j) < 3 · 2n√

n
.

In the general case we have the following result [23].

Theorem 7.15. Let g be a Lie algebra with r-dimensional solvable radical and nilradical n over
an algebraically closed field of characteristic zero. Then we have

µ(g) ≤ µ(g/n) + 3 · 2r√
r
.

For the 10-dimensional counterexamples to Milnor’s question we proved that 12 ≤ µ(g) ≤ 18,
but we do not know the exact value in all cases.

The canonical bijections of Proposition 7.9 and 7.10 can be generalized to nil-affine transfor-
mations and post-Lie algebra structures, see [24].

Theorem 7.16. Let G and N be connected and simply connected nilpotent Lie groups. Then
there exists a simply transitive action by nil-affine transformations of G on N if and only if the
corresponding pair of Lie algebras (g, n) admits a complete post-Lie algebra structure.

In the classical case N = Rn a complete post-Lie algebra structure on (g,Rn) is just a
complete pre-Lie algebra structure on g. In the other extreme case G = Rn a complete post-Lie
algebra structure on (Rn, n) is a complete LR-structure on n, see [22].

The definition of a post-Lie algebra and a post-Lie algebra structure are as follows [53, 24].

Definition 7.17. A post-Lie algebra (V, ·, { , }) is a vector space V over a field K equipped
with two K-bilinear operations x · y and {x, y}, such that g = (V, { , }) is a Lie algebra, and

{x, y} · z = (y · x) · z − y · (x · z)− (x · y) · z + x · (y · z)

x · {y, z} = {x · y, z}+ {y, x · z}

for all x, y, z ∈ V .

Note that if g is abelian then (V, ·) is a pre-Lie algebra. We can associate to a post-Lie
algebra (V, ·, {, }) a second Lie algebra n = (V, [ , ]) via

[x, y] := x · y − y · x+ {x, y}.

This Lie bracket satisfies the following identity

[x, y] · z = x · (y · z)− y · (x · z),

i.e., the post-Lie algebra is a left module over the Lie algebra n.
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Definition 7.18. Let (g, [x, y]), (n, {x, y}) be two Lie brackets on a vector space V . A post-Lie
algebra structure on the pair (g, n) is a K-bilinear product x · y satisfying the identities

x · y − y · x = [x, y]− {x, y}
[x, y] · z = x · (y · z)− y · (x · z)

x · {y, z} = {x · y, z}+ {y, x · z}
for all x, y, z ∈ V .

These identities imply the identities given before, so that (V, ·, [ , ]) is a post-Lie algebra with
associated Lie algebra n. If n is abelian then the conditions of a post-Lie algebra structure
reduce to the conditions

[x, y] = x · y − y · x,
[x, y] · z = x · (y · z)− y · (x · z),

so that x · y is a pre-Lie algebra structure on g. On the other hand, if g is abelian then the
conditions reduce to

x · y − y · x = −{x, y}
x · (y · z) = y · (x · z),

(x · y) · z = (x · z) · y,
so that −x · y is an LR-structure on n.

8. Milnor’s question for nil-affine transformations

Milnor’s question 6.6 and the algebraic version 7.11 can be asked more generally for nil-
affine transformations and post-Lie algebra structures. So we may ask the following existence
question.

Question 8.1. Exactly which pairs of Lie algebras (g, n) over a given vector space V over a
field of characteristic zero admit a post-Lie algebra structure?

For the correspondence to nil-affine transformations we would need to consider complete
post-Lie algebra structures, see [24], but we would like to ask more generally for all post-Lie
algebra structures. Of course this question is very ambitious and it is not clear how a complete
answer should look like. It seems reasonable to study here first certain algebraic properties of
g and n, such as being abelian, nilpotent, solvable, simple, semisimple, reductive and complete
as the most basic ones.

If n is abelian we are back to Milnor’s original question and we ask exactly which Lie algebras
g admit a pre-Lie algebra structure. This is as we already know a difficult question and there
are only partial answers. For example, if g is semisimple or more generally perfect, then g does
not admit any pre-Lie algebra structure, see Proposition 7.8 and [43]. If g is reductive, the
question is already open. Certainly gln(K) does admit a pre-Lie algebra structure, but on the
other hand, there are several restrictions. For example, we have the following result, see [15].

Proposition 8.2. Let g = a⊕s be a reductive Lie algebra, where s is simple and a is the center
of g with dim(a) = 1. Then g admits a pre-Lie algebra structure if and only if s ∼= sln(K) for
some n ≥ 2.



CRYSTALLOGRAPHIC ACTIONS 15

For more results and details concerning the reductive case and étale affine representations of
reductive groups see [6, 15, 28, 29].

On the other hand, if g is abelian, then we ask which Lie algebras exactly admit an LR-structure.
This question is more accessible and we have obtained several results, see [20].

Proposition 8.3. Let n be a Lie algebra admitting an LR-structure. Then n is two-step solv-
able.

However, not every two-step solvable Lie algebra admits an LR-structure.

Proposition 8.4. There are 3-step nilpotent Lie algebras with 4 generators of dimension n ≥ 13
not admitting any LR-structure.

There are no such examples with less than 4 generators.

Proposition 8.5. Let n be a 2-step nilpotent Lie algebra or a 3-step nilpotent Lie algebra with
at most 3 generators. Then g admits a complete LR-structure.

For further results we refer to [20, 22].

For the general case concerning post-Lie algebra structures on pairs of Lie algebras (g, n) we
also have several results, see [24, 25, 26, 31, 32, 39]. Let us explain some of them.

Proposition 8.6. Suppose that (g, n) admits a post-Lie algebra structure, where g is nilpotent.
Then n is solvable. If g is nilpotent with H0(g, n) = 0, then n is nilpotent.

In case one of the Lie algebras is semisimple, but the other Lie algebra not, we have the
following result.

Proposition 8.7. Let (g, n) be a pair of Lie algebras, where g is semisimple and n is solvable.
Then (g, n) does not admit a post-Lie algebra structure.

The situation is not symmetric in g and n.

Proposition 8.8. Let (g, n) be a pair of Lie algebras, where n is semisimple and g is solvable
and unimodular. Then (g, n) does not admit a post-Lie algebra structure.

The unimodularity assumption is essential here. Otherwise any triangular decomposition of n
induces an obvious post-Lie algebra structure on (g, n), where g is solvable but not unimodular.

In case one of the Lie algebras g, n is simple we have the following results.

Proposition 8.9. Suppose that (g, n) admits a post-Lie algebra structure, where g is simple.
Then n is simple and isomorphic to g. The post-Lie algebra product then is either x · y = 0
with [x, y] = {x, y}, or x · y = [x, y] with [x, y] = −{x, y}.

If we interchange the roles of g and n we only can prove the following result, see [35].

Proposition 8.10. Suppose that (g, n) admits a post-Lie algebra structure, where n is simple
and g is reductive. Then g is simple and isomorphic to n.

In case both g and n are semisimple, but not simple, we can have many interesting post-Lie
algebra structures.
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Example 8.11. Let g and n both isomorphic to sl2(C) ⊕ sl2(C). Then there exist non-trivial
post-Lie algebra structures on (g, n). If n = sl2(C) ⊕ sl2(C) has the basis (e1, f1, h1, e2, f2, h2)
with Lie brackets

{e1, f1} = h1, {e2, f2} = h2,
{e1, h1} = −2e1, {e2, h2} = −2e2,
{f1, h1} = 2f1, {f2, h2} = 2f2,

then the following product defines a post-Lie algebra structure on (g, n):

e1 · e2 = −4e2 + h2, f1 · e2 = 2e2 − h2, h1 · e2 = 6e2 − 2h2,
e1 · f2 = 4f2 + 4h2, f1 · f2 = −2f2 − h2, h1 · f2 = −6f2 − 4h2,
e1 · h2 = −8e2 − 2f2, f1 · h2 = 2e2 + 2f2, h1 · h2 = 8e2 + 4f2.

Here the Lie brackets of g are given by

[e1, f1] = h1, [f1, h1] = 2f1, [h1, f2] = −6f2 − 4h2,
[e1, h1] = −2e1, [f1, e2] = 2e2 − h2, [h1, h2] = 8e2 + 4f2,
[e1, e2] = −4e2 + h2, [f1, f2] = −2f2 − h2, [e2, f2] = h2,
[e1, f2] = 4f2 + 4h2, [f1, h2] = 2e2 + 2f2, [e2, h2] = −2e2,
[e1, h2] = −8e2 − 2f2, [h1, e2] = 6e2 − 2h2, [f2, h2] = 2f2.

It is easy to see that g is isomorphic to sl2(C)⊕ sl2(C).

The following table shows, what we know about the existence of post-Lie algebra structures
on pairs (g, n), with respect to the seven different classes of Lie algebras given below. So
more precisely the classes are abelian, nilpotent non-abelian, solvable non-nilpotent, simple,
semisimple non-simple, reductive non-semisimple, non-abelian and complete non-semisimple
Lie algebras.

(g, n) n abe n nil n sol n sim n sem n red n com

g abelian X X X − − − X
g nilpotent X X X − − − X
g solvable X X X X X X X
g simple − − − X − − −
g semisimple − − − − X ? −
g reductive X ? ? − ? X X
g complete X X X ? ? X X

Note that a checkmark only means that there is some pair (g, n) with the given algebraic prop-
erties admitting a post-Lie algebra structure. It does not imply that all such pairs admit a
post-Lie algebra structure.

Besides existence of post-Lie algebra structures it is also interesting to obtain classification
results. For the general case such results are difficult to obtain. There are only some classi-
fications in low dimensions. We refer to [31] for a classification of post-Lie algebra structures
on (g, n), where both g and n are isomorphic to the 3-dimensional Heisenberg Lie algebra. We
have much better classification results for commutative post-Lie algebra structures, which will
be discussed in the next section.
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9. Commutative post-Lie algebra structures

A post-Lie algebra structure (V, ·) on a pair (g, n) is called commutative, if the algebra product
is commutative, i.e., if x · y = y · x for all x, y ∈ V . This implies that [x, y] = {x, y}, so that
the Lie algebras g and n are equal. We only write g instead of the pair (g, g).

Definition 9.1. A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra
g is a K-bilinear product x · y satisfying the identities:

x · y = y · x
[x, y] · z = x · (y · z)− y · (x · z)

x · [y, z] = [x · y, z] + [y, x · z]

for all x, y, z ∈ V .

There is always the trivial CPA-structure on g, given by x · y = 0 for all x, y ∈ g. Any
CPA-structure on a semisimple Lie algebra over a field of characteristic zero is trivial, see [26].
This was generalized in [27] as follows.

Proposition 9.2. Any CPA-structure on a perfect Lie algebra of characteristic zero is trivial.

For complete Lie algebras one can classify all CPA-structures. A Lie algebra g is called
complete, if Z(g) = 0 and Der(g) = Inn(g). This is equivalent to the cohomological conditions
H0(g, g) = H1(g, g) = 0. A complete Lie algebra is called simply-complete, if g does not have
a non-trivial complete ideal. Every complete Lie algebra can be written as the direct sum of
simply-complete Lie algebras. We have the following result [27].

Theorem 9.3. Let g be a complex simply-complete Lie algebra with nilradical n. Suppose
that g is not metabelian and that n = [g, n]. Then there is a bijective correspondence between
CPA-structures on g and elements z ∈ Z([g, g]), given by

x · y = [[z, x], y].

We believe that the condition n = [g, n] is automatically satisfied for complete Lie algebras.
However, we could not find this statement with a proof in the literature. The only simply-
complete metabelian Lie algebra is the 2-dimensional non-abelian Lie algebra r2(C), where we
can classify all CPA-structures directly.

There are also classification results concerning CPA-structures on nilpotent Lie algebras. An
important fact here is the following, see [30].

Theorem 9.4. Let g be a nilpotent Lie algebra over a field of characteristic zero satisfying
Z(g) ⊆ [g, g]. Then every CPA-structure on g is complete, i.e., all left multiplications L(x) are
nilpotent.

In this case we have

L(Z(g))d
dimZ(g)+1

2
e(g) = 0.

Definition 9.5. A CPA-structure (V, ·) on g is called associative if g · [g, g] = 0. It is called
central if g · g ⊆ Z(g).

The first part of the definition is justified by the following lemma [34].
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Lemma 9.6. Let (V, ·) be a CPA-structure on a Lie algebra g. Then we have g · [g, g] = 0 if
and only if the algebra (V, ·) is associative.

It is easy to see that every central CPA-structure on g is associative and conversely that every
associative CPA-structure on g satisfies g · g ⊆ Z([g, g]). Also, every central CPA-structure on
g satisfies g · Z(g) = 0.

If dimZ(g) = 1 then the formula after Theorem 9.4 yields the following corollary.

Corollary 9.7. Let g be a nilpotent Lie algebra over a field of characteristic zero satisfying
Z(g) ⊆ [g, g] and dimZ(g) = 1. Then every CPA-structure on g satisfies g · Z(g) = 0.

In particular, every CPA-structure on a filiform nilpotent Lie algebra g satisfies g ·Z(g) = 0.
On the other hand, not all CPA-structures on a filiform nilpotent Lie algebra are central or
associative. But we have shown the following result in [34].

Theorem 9.8. Let g be a complex filiform Lie algebra of solvability class d ≥ 3. Then every
CPA-structure (V, ·) on g is associative and the algebra (V, ·) is Poisson-admissible.

For certain families of filiform nilpotent Lie algebras a classification of all CPA-structures is
possible [34, 39]. As an example let us consider the Witt Lie algebra.

Definition 9.9. The Witt Lie algebra Wn for n ≥ 5 over a field of characteristic zero is defined
by the Lie brackets

[e1, ej] = ej+1, 2 ≤ j ≤ n− 1,

[ei, ej] =
6(j − i)

j(j − 1)
(
j+i−2
i−2

)ei+j, 2 ≤ i ≤ n− 1

2
, i+ 1 ≤ j ≤ n− i,

where (e1, . . . , en) is an adapted basis for Wn.

To give a CPA-structure (V, ·) on g explicitly it is enough to list the non-zero products ei · ej
for all 1 ≤ i ≤ j ≤ n.

Proposition 9.10. Every CPA-structure on the complex Witt algebra Wn for n ≥ 7 with respect
to an adapted basis (e1, . . . , en) is given as follows,

e1 · e1 = αen−2 + βen−1 + γen,

e1 · e2 =
6(n− 4)

(n− 2)(n− 3)
αen−1 + δen,

e2 · e2 = εen,

where α, β, γ, δ, ε ∈ C are arbitrary parameters.

Note that all CPA-structures on the Witt algebra are associative but not necessarily central.

We also have a result concerning CPA-structures on free-nilpotent Lie algebras Fg,c with g ≥ 2
generators and nilpotency class c ≥ 2, see [30].

Theorem 9.11. All CPA-structures on F3,c with c ≥ 3 are central.

The result is not true for F3,2. We believe that all CPA-structures on Fg,c with g ≥ 2 and
c ≥ 3 are central. However, we could only prove a part of it so far, see [30].

Finally we have determined the CPA-structures on certain infinite-dimensional Lie algebras,
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e.g., on Kac-Moody algebras [33]. For the infinite-dimensional Witt algebraW in characteristic
zero with a set of basis vectors {ei} and Lie brackets

[ei, ej] = (j − i)ei+j
we have that all CPA-structures on W are trivial. Note that in case the basis is finite, W is
isomorphic to Wn for some n.
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[55] H. Zassenhaus: Über einen Algorithmus zur Bestimmung der Raumgruppen. (German) Comment. Math.
Helv. 21, (1948). 117–141.

Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, 1090 Wien, Aus-
tria

Email address: dietrich.burde@univie.ac.at


	1. Introduction
	2. Euclidean crystallographic actions
	3. Hyperbolic and spherical crystallographic actions
	4. Affine and nil-affine crystallographic actions
	5. Simply transitive groups of affine and nil-affine transformations
	6. Left-invariant affine structures on Lie groups
	7. Pre-Lie algebra and post-Lie algebra structures
	8. Milnor's question for nil-affine transformations
	9. Commutative post-Lie algebra structures
	Acknowledgments
	References

