
COMMUTATIVE POST-LIE ALGEBRA STRUCTURES ON LIE ALGEBRAS
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Abstract. We show that any CPA-structure (commutative post-Lie algebra structure) on
a perfect Lie algebra is trivial. Furthermore we give a general decomposition of inner CPA-
structures, and classify all CPA-structures on complete Lie algebras. As a special case we
obtain the CPA-structures of parabolic subalgebras of semisimple Lie algebras.

1. Introduction

Post-Lie algebras have been introduced by Vallette [22] in connection with the homology of
partition posets and the study of Koszul operads. Loday [17] studied pre-Lie algebras and post-
Lie algebras within the context of algebraic operad triples. We rediscovered post-Lie algebras
as a natural common generalization of pre-Lie algebras [13, 15, 20, 4, 5, 6] and LR-algebras
[8, 9] in the geometric context of nil-affine actions of Lie groups. We then studied post-Lie alge-
bra structures in general, motivated by the importance of pre-Lie algebras in geometry, and in
connection with generalized Lie algebra derivations [7, 10, 11, 12]. In particular, the existence
question of post-Lie algebra structures on a given pair of Lie algebras turned out to be very
interesting and quite challenging. But even if existence is clear the question remains how many
structures are possible. In [12] we introduced a special class of post-Lie algebra structures,
namely commutative ones. We conjectured that any commutative post-Lie algebra structure,
in short CPA-structure, on a complex, perfect Lie algebra is trivial. For several special cases we
already proved the conjecture in [12], but the general case remained open. One main result of
this article here is a full proof of this conjecture, see Theorem 3.3. Furthermore we also study
inner CPA-structures and give a classification of CPA-structures on parabolic subalgebras of
semisimple Lie algebras.
In section 2 we study ideals of CPA-structures, non-degenerate and inner CPA-structures. In
particular we show that any CPA-structure on a complete Lie algebra is inner. We give a
general decomposition of inner CPA-structures, see Theorem 2.14. This implies, among other
things, that any Lie algebra g admitting a non-degenerate inner CPA-structure is metabelian,
i.e., satisfies [[g, g], [g, g]] = 0.
In section 3 we prove the above conjecture and generalize the result to perfect subalgebras
of arbitrary Lie algebras in Theorem 3.4. This also implies that any Lie algebra admitting a
non-degenerate CPA-structure is solvable. Conversely we show that any non-trivial solvable
Lie algebra admits a non-trivial CPA-structure.
In section 4 we classify CPA-structures on complete Lie algebras satisfying a certain techni-
cal condition. As an application we obtain all CPA-structures on parabolic subalgebras of
semisimple Lie algebras.

Date: August 19, 2016.
2000 Mathematics Subject Classification. Primary 17B30, 17D25.
Key words and phrases. Post-Lie algebra, Pre-Lie algebra.
The authors acknowledge support by the Austrian Science Foundation FWF, grant P28079 and grant J3371.

1



2 D. BURDE AND W. MOENS

2. Preliminaries

Let K always denote a field of characteristic zero. Post-Lie algebra structures on pairs of Lie
algebras (g, n) over K are defined as follows [10]:

Definition 2.1. Let g = (V, [ , ]) and n = (V, { , }) be two Lie brackets on a vector space V
over K. A post-Lie algebra structure on the pair (g, n) is a K-bilinear product x · y satisfying
the identities:

x · y − y · x = [x, y]− {x, y}(1)

[x, y] · z = x · (y · z)− y · (x · z)(2)

x · {y, z} = {x · y, z}+ {y, x · z}(3)

for all x, y, z ∈ V .

Define by L(x)(y) = x · y and R(x)(y) = y · x the left respectively right multiplication
operators of the algebra A = (V, ·). By (3), all L(x) are derivations of the Lie algebra (V, {, }).
Moreover, by (2), the left multiplication

L : g→ Der(n) ⊆ End(V ), x 7→ L(x)

is a linear representation of g. A particular case of a post-Lie algebra structure arises if the
algebra A = (V, ·) is commutative, i.e., if x · y = y · x is satisfied for all x, y ∈ V . Then the
two Lie brackets [x, y] = {x, y} coincide, and we obtain a commutative algebra structure on V
associated with only one Lie algebra [12].

Definition 2.2. A commutative post-Lie algebra structure, or CPA-structure on a Lie algebra
g is a K-bilinear product x · y satisfying the identities:

x · y = y · x(4)

[x, y] · z = x · (y · z)− y · (x · z)(5)

x · [y, z] = [x · y, z] + [y, x · z](6)

for all x, y, z ∈ V . The associated algebra A = (V, ·) is called a CPA.

There is always the trivial CPA-structure on g, given by x ·y = 0 for all x, y ∈ g. However, in
general it is not obvious whether or not a given Lie algebra admits a non-trivial CPA-structure.
For abelian Lie algebras, CPA-structures correspond to commutative associative algebras:

Example 2.3. Suppose that (A, ·) is a CPA-structure on an abelian Lie algebra g. Then A is
commutative and associative.

Indeed, using (4), (5) and [x, y] = 0 we have

x · (z · y) = x · (y · z) = y · (x · z) = (x · z) · y
for all x, y, z ∈ g.
It is easy to see that there are examples only admitting trivial CPA-structures:

Example 2.4. Every CPA-structure on sl2(K) is trivial.

This follows from a direct computation, but also holds true more generally for every semisim-
ple Lie algebra, see Proposition 3.1. One main aim of this paper is to show that this is even
true for all perfect Lie algebras, see Theorem 3.3.



POST-LIE ALGEBRA STRUCTURES 3

Definition 2.5. A CPA-structure (A, ·) on g is called nondegenerate if the annihilator

AnnA = ker(L) = {x ∈ g | L(x) = 0}
is trivial.

Note that AnnA is an ideal of the CPA as well as an ideal of the Lie algebra. Here a
subspace I of V is an algebra ideal if A · I ⊆ I, and a Lie algebra ideal if [g, I] ⊆ I. An ideal
is defined to be an ideal for both A and g. Let [x1, . . . , xn] := [x1, [x2, [x3, . . . , xn]]] · · · ] and
I [n] := [I, [I, [I, · · · ]]] · · · ] for an ideal I.

Proposition 2.6. Suppose that (A, ·) is a CPA-structure on g. Then there exists an ideal I∞
such that

(1) I
[k]
∞ ⊆ AnnA ⊆ I∞ for all k large enough.

(2) The CPA-structure on g/I∞ is nondegenerate.

Proof. Define an ascending chain of ideals In by I0 = 0 and In = {x ∈ A | x · A ⊆ In−1} for
n ≥ 1. We have I1 = AnnL and each In is indeed an ideal because of In · A ⊆ In−1 ⊆ In, and

[In, g] · A ⊆ In · (g · A) + g · (In · A)

⊆ In · A+ g · In−1
⊆ In−1.

So for x ∈ [In, g] and a ∈ A we have x · a ∈ In−1, hence x ∈ In. Since g is finite-dimensional,
this chain stabilizes, i.e., there exists a minimal k such that Ik = I` for all ` ≥ k. Then
define I∞ := Ik. By construction we have A · I1 = 0, A · (A · I2) ⊆ A · I1 = 0, etc., so that
right-associative products in I∞ of length at least k + 1 vanish. Using (5) we have

[x1, . . . , xn−1, xn] · z = [x1, . . . , xn−1] · (xn · z)− xn · ([x1, . . . , xn−1] · z)

for all x1, . . . , xn, z ∈ V . By induction we see that the elements [x1, . . . , xn] · z are spanned by
the right-associative elements xπ(1) · xπ(2) · · ·xπ(n) · z, where π runs over all permutations in Sn.

This yields I
[k+1]
∞ ·g = 0, and hence I

[k+1]
∞ ⊆ AnnA. We also have AnnA = I1 ⊆ I∞. Furthermore

x · g ⊆ I∞ implies x ∈ I∞, so that the induced CPA-structure on g/I∞ is nondegenerate. Note
that I∞ is in fact the minimal ideal with this property. �

Definition 2.7. A CPA-structure on g is called weakly inner, if there is a ϕ ∈ End(V ) such
that the algebra product is given by

x · y = [ϕ(x), y].

It is called inner, if in addition ϕ is a Lie algebra homomorphism, i.e., ϕ ∈ End(g).

In terms of operators this means that we have L(x) = ad(ϕ(x)) for all x ∈ V . We have
ker(ϕ) ⊆ ker(L) with equality for Z(g) = 0.

Lemma 2.8. Let g be a Lie algebra with trivial center. Then any weakly inner CPA-structure
on g is inner.

Proof. A product x · y = [ϕ(x), y] with some ϕ ∈ End(V ) defines a CPA-structure on g, if and
only if

[ϕ(x), y] = [ϕ(y), x]

[[ϕ(x), ϕ(y)], z] = [ϕ([x, y]), z]
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for all x, y, z ∈ g. In case that Z(g) = 0 the last condition says that ϕ is a Lie algebra
homomorphism. �

Corollary 2.9. Let g be a complete Lie algebra. Then any CPA-structure on g is inner.

Proof. By definition we have Der(g) = ad(g) and Z(g) = 0. Hence L(x) ∈ Der(g) implies that
L(x) = ad(ϕ(x)) for some ϕ ∈ End(g). �

In general not all CPA-structures on a Lie algebra are inner or weakly inner. This is trivially
the case for abelian Lie algebras, which do admit nonzero CPA-structures, which cannot be
weakly inner. The Heisenberg Lie algebra h1 = 〈e1, e2, e3 | [e1, e2] = e3〉 admits a family A(µ)
of CPA-structures given by e1 · e1 = e2, e1 · e2 = e2 · e1 = µe3 for µ ∈ K, see Proposition 6.3 in
[12]:

Example 2.10. The CPA-structure A(µ) on the Heisenberg Lie algebra h1 is not weakly inner.

Indeed, all ad(ϕ(x)) map h1 into its center, whereas L(e1) does not. Hence L(x) = ad(ϕ(x))
cannot hold for all x ∈ h1.

Lemma 2.11. Suppose that (A, ·) is an inner CPA-structure on g. Then the ascending chain
of ideals In is invariant under ϕ, and all Lie algebra ideals of g are ideals of A. Conversely, if
the structure is nondegenerate, all ideals of A are Lie algebra ideals.

Proof. Let I be a Lie algebra ideal. Then g · I = [ϕ(g), I] ⊆ [g, I] ⊆ I. Conversely, let I be
an algebra ideal and (A, ·) be nondegenerate, given by x · y = [ϕ(x), y] with ϕ being invertible.
Then ϕ(g) = g, so that

[g, I] = [ϕ(g), I] = g · I ⊆ I.

The ideals In were defined by I0 = 0 and In = {x ∈ A | x · A ⊆ In−1} for n ≥ 1. Clearly
ϕ(I0) = I0. Using induction we obtain

g · ϕ(In) = [ϕ(g), ϕ(In)]

= ϕ([g, In])

⊆ ϕ(In−1) ⊆ In−1.

Hence ϕ(In) ⊆ In for all n. �

Lemma 2.12. Suppose that x·y = [ϕ(x), y] is an inner CPA-structure on a complex Lie algebra
g, and let g =

⊕
α gα be the generalized eigenspace decomposition of g with respect to ϕ. Then

we have

[gα, gβ] ⊆ gαβ,

[gα, gβ] 6= 0 implies α + β = 0.

Proof. The first statement is well-known, so that we only need to prove the second one. Using
[ϕ(x), y] = −[x, ϕ(y)] we obtain

ϕ([x, y]) = [ϕ(x), ϕ(y)] = −[ϕ2(x), y].

By induction on k ≥ 0 this yields

(ϕ+ γ id)k([x, y]) = (−1)k · [(ϕ2 − γ id)k(x), y].
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The RHS vanishes for γ := α2 and k large enough, since if ϕ has a generalized eigenvector
x with generalized eigenvalue α, then ϕ2 has generalized eigenvalue α2 for x. This yields
[gα, gβ] ⊆ g−α2 , and similarly [gα, gβ] ⊆ g−β2 , hence

[gα, gβ] ⊆ g−α2 ∩ gαβ ∩ g−β2 .

If [gα, gβ] 6= 0 then all three spaces coincide, so that −β2 = αβ = −α2, i.e., α + β = 0. �

Definition 2.13. A CPA-structure on g is called nil-inner, if it can be written as x·y = [ϕ(x), y]
with a nilpotent Lie algebra homomorphism ϕ ∈ End(g).

The trivial CPA-structure is an example of a nil-inner structure. We can now obtain a general
decomposition of complex inner CPA-structures.

Theorem 2.14. Let g be a complex Lie algebra and suppose that it admits an inner CPA-
structure with ϕ ∈ End(g). Then g decomposes into the sum of ϕ-invariant ideals

g = n⊕ h

with the following properties:

(1) ϕ|n is a nilpotent endomorphism of n such that the CPA-structure on n is nil-inner.
(2) ϕ|h is an automorphism of h, and we have [[h, h], [h, h]] = 0.

Proof. Consider the eigenspace decomposition

g =
⊕
α

gα = g0 ⊕
⊕
α 6=0

gα

of g with respect to the Lie algebra homomorphism ϕ, with n = g0 and h = ⊕α 6=0gα. Both n and
h are Lie ideals, and hence ideals by Lemma 2.11, since [gα, gβ] ⊆ g−α2 implies that [n, g] ⊆ n
and [h, g] ⊆ h. Moreover, both n and h are invariant under ϕ, so that the restrictions of ϕ to n
and h are well-defined. Clearly the restriction of ϕ to n is nilpotent, and since all generalized
eigenvalues of h are nonzero, the restriction of ϕ to h is an automorphism. It remains to show
that h is metabelian, i.e., to show that

[[gα, gβ], [gγ, gδ]] = 0

for all α, β, γ, δ 6= 0. Suppose this is not the case. Then Lemma 2.12 yields

α + β = 0,

γ + δ = 0,

αβ + γδ = 0.

Setting β = −α, γ = αi and δ = −αi with i2 = −1 the bracket takes the form

[[gα, g−α], [gαi, g−αi]] 6= 0.

We may apply the Jacobi identity here in two ways:

[[gα, g−α], [gαi, g−αi]] ⊆ [gαi, [g−αi, [gα, g−α]]] + [g−αi, [[gα, g−α], gαi]],

and

[[gα, g−α], [gαi, g−αi]] ⊆ [[g−α, [gαi, g−αi]], gα] + [[[gαi, g−αi], gα], g−α].

In each case, at least one of the terms on the right hand side must be nonzero. The first case
gives us that either 0 6= [g−αi, [gα, g−α]] ⊆ [g−αi, g−α2 ], so that −αi − α2 = 0 by Lemma 2.12,
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or 0 6= [gαi, [gα, g−α]] ⊆ [gαi, g−α2 ], so that αi − α2 = 0. This means α = ±i. The second case
gives us that either 0 6= [g−α, [gαi, g−αi]] ⊆ [g−α, gα2 ], so that α2 − α = 0 by Lemma 2.12, or
0 6= [gα, [gαi, g−αi]] ⊆ [gα, gα2 ], so that α2 + α = 0. This means α = ±1. So we must have both
α = ±i and α = ±1, which is impossible. �

Corollary 2.15. Let g be a Lie algebra over K admitting a non-degenerate inner CPA-
structure. Then g is metabelian.

Proof. Complexifying g the above Theorem implies that g = n⊕ h and h is metabelian. Since
ker(ϕ) ⊆ ker(L) = 0 we have n = 0 and g = h. Now g is metabelian over C if and only if g is
metabelian over K. �

Let b be the standard Borel subalgebra of sl2(K) with basis e1 = E12, e2 = E11−E22 and Lie
bracket [e1, e2] = −2e1. Here Eij denotes the matrix with entry 1 at position (i, j), and entries
0 otherwise. Note that b is isomorphic to the 2-dimensional non-abelian Lie algebra r2(K).

Example 2.16. Every CPA-structure on the Borel subalgebra b of sl2(K) is inner, and is of
the form

L(e1) =

(
0 α
0 0

)
, L(e2) =

(
α β
0 0

)
for α, β ∈ K such that α(α− 2) = 0.

Indeed, since b is complete, every CPA-structure on b is inner by Corollary 2.9. A short
computation shows that we have L(x) = ad(ϕ(x))) with

ϕ =
1

2

(
−α −β
0 α

)
and α(α − 2) = 0. Note that ϕ2 = 0 for α = 0, and ϕ2 = I for α = 2. The latter structure is
non-degenerate, so that b is metabelian according to Corollary 2.15. Of course, this is obvious
anyway.

3. CPA-structures on perfect and solvable Lie algebras

For this section we will assume that all Lie algebras are complex. We start with CPA-
structures on semisimple Lie algebras, where we give another proof of Proposition 5.4 and
Corollary 5.5 in [12], without using the structure results of [16]:

Proposition 3.1. Any CPA-structure on a semisimple Lie algebra is trivial. Furthermore any
CPA-structure on a Lie algebra g satisfies g · g ⊆ rad(g).

Proof. Let (A, ·) be a CPA-structure on a semisimple Lie algebra s. Then it is inner by Corollary

2.9, i.e., given by L(x) = ad(ϕ(x)). We have I
[k]
∞ · s = 0 for the ideal I∞ of Proposition

2.6. Since I∞ is invariant by Lemma 2.11 the quotient CPA-structure on s/I∞ is also inner,
and nondegenerate. Theorem 2.14 implies that the Lie algebra s/I∞ is metabelian, hence
solvable. Since s is perfect, any solvable quotient is trivial. Hence we have s = I∞ and

0 = I
[k]
∞ · s = s[k] · s = s · s. Hence the CPA-structure on s is trivial. The second part follows by

considering the semisimple quotient g/ rad(g). �

Lemma 3.2. Let s be a semisimple Lie algebra. Then there exist Lie algebra generators {si |
1 ≤ i ≤ m} of s such that for every linear representation ψ : s→ gl(V ), all ψ(si) are nilpotent.
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Proof. Let {ei, fi, hi | 1 ≤ i ≤ k} be the Chevalley-Serre generators for s. Each triple (ei, fi, hi)
generates a subalgebra isomorphic to sl2(C), and ψ restricted to it is a representation. By
the classification of representations of sl2(C) we know that ψ(ei) and ψ(fi) are nilpotent. It
follows that {ei, fi | 1 ≤ i ≤ k} is a set of generators for s such that all ψ(ei) and all ψ(fi) are
nilpotent. �

We are now able to prove Conjecture 5.21 of [12].

Theorem 3.3. Any CPA-structure on a perfect Lie algebra g is trivial, i.e., satisfies g · g = 0.

Proof. Let g be a perfect Lie algebra with Levi subalgebra s and solvable radical rad(g) = a.
We have g = s n a. Denote by Der(g, a) the space of those derivations D ∈ Der(g) satisfying
D(g) ⊆ a. For the proof it is sufficient to show that s · g = 0, since g is perfect and hence s
generates g as a Lie ideal by Lemma 5.15 in [12]. By Corollary 5.17 in [12] we may assume
that a is abelian. Decompose a into irreducible s-modules a = a1 ⊕ · · · ⊕ am. By Proposition
3.1 we have g · g ⊆ a, i.e., L(g)(g) ⊆ a, and hence L(g) ⊆ Der(g, a). Lemma 5.18 in [12] gives
a natural splitting

Der(g, a) = Ders(a) n Z1(s, a),

where

Ders(a) = {d ∈ Der(a) | ϕ(x)d(a) = d(ϕ(x)a) ∀x ∈ s, a ∈ a}
with L(x) = ad(ϕ(x)). Since s is semisimple, Whitehead’s first Lemma implies that

s · g = g · s
= Z1(s, a)(s)

= B1(s, a)(s)

= [s, a]

= [s, a1] + · · ·+ [s, am]

for all s ∈ s. On the other hand, we have the natural embeddings of vector spaces

Ders(a) ⊆ Homs(a) ⊆
⊕
i,j

Homs(ai, aj).

Hence for every s ∈ s there exist linear maps f sj,i ∈ Homs(ai, aj) such that

s · vi =
m∑
k=1

f sk,i(vi)

for all vi ∈ ai, for every i. Altogether we obtain f sj,i(ai) ⊆ [s, aj] for all j, i ∈ {1, . . . ,m}.
Suppose that s ∈ s is an element such that [s, aj] ( aj for all j. Then Schur’s Lemma applied
to the simple s-modules aj implies that f sj,i = 0 for all i, j, so that s · a = 0. Now Lemma
3.2 applied to the linear representations ψj = adaj gives us a set of generators {s1, . . . , sk} of
s such that im(ψj(si)) = [si, aj] ( aj for all i, j, since all ψj(si) are nilpotent. Thus we have
si · a = 0 for all i. Since the si generate s this means that s · a = 0, and hence L(s) ⊆ Z1(s, a).
By Lemma 5.18 in [12] Z1(s, a) is abelian, so that L(s) is both abelian and semisimple, hence
trivial. We obtain L(s) = 0, so that s · g = 0 and the proof is finished. �

We can generalize the last result as follows.
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Theorem 3.4. Let p be a perfect subalgebra of a Lie algebra g. Then every CPA-structure on
g satisfies p · g = 0.

Proof. Let t be a Levi complement of p. Then p · g = 0 if and only if t · g = 0, again by Lemma
5.15 in [12] and the fact that for a set X ⊆ ker(L) the ideal in g generated by X also lies in
ker(L). We have t · g ⊆ s · g for some Levi complement s of g. Hence it is enough to show
that s · g = 0 for all Levi complements s of g. Suppose first that g has no proper characteristic
ideal I with 0 ( I ( rad(g). Then rad(g) is abelian, because otherwise [rad(g), rad(g)] would
be a proper characteristic ideal. Furthermore g is of the form g = s n V n with an irreducible
s-module. If V is the trivial module, then g is reductive and we have s · g = 0 by Corollary 5.6
of [12]. Otherwise g = sn V n is perfect, and s · g = 0 by Theorem 3.3.
It remains to study the case where g admits a proper characteristic ideal 0 ( I ( rad(g).
Either we have s · g = 0 and we are done, or there exists a Lie algebra g with s · g 6= 0. We may
choose g so that it is of minimal dimension. By Proposition 3.1 we have s · g ⊆ rad(g), so that
rad(g) 6= 0. Since s is semisimple, the g-module g given by the representation x 7→ L(x) has a
g-module complement U with g = U ⊕ rad(g). Using s · g ⊆ rad(g) we obtain s · U = 0. Since
I is invariant under the s-action, we have a module complement K with rad(g) = K ⊕ I. The
quotient algebra g/I then is isomorphic to snK/I, and the minimality of g implies s · g ⊆ I,
so that s ·K ⊆ K ∩ I = 0. We see that the Lie algebra sn I is closed under the CPA-structure:
since I is a characteristic ideal of g we have g · I ⊆ I, and

(sn I) · (sn I) ⊆ s · g + g · I ⊆ sn I.

Since g is minimal it follows that s · I = 0, and

s · g = s · (U +K + I) = s · U + s ·K + s · I = 0.

This is a contradiction, and the proof is finished. �

Corollary 3.5. Suppose that g admits a nondegenerate CPA-structure. Then g is solvable.

Proof. Let s be a Levi subalgebra of g. Then s · g = 0 by Theorem 3.4, so that s ⊆ ker(L) = 0.
Hence rad(g) = g, and g is solvable. �

Since we know that a perfect Lie algebra only admits the trivial CPA-structure, it is natural
to ask for the converse. Given a non-perfect Lie algebra g. Can we construct a non-trivial
CPA-structures on g ? The following example shows that this is not always possible.

Example 3.6. Let g denote the Lie subalgebra of sl3(C) of dimension 6 with basis

(e1, . . . , e6) = (E12, E13, E21, E23, E11 − E22, E22 − E33).

Then g is not perfect and admits only the trivial CPA-structure.

The Lie brackets are given by

[e1, e3] = e5, [e1, e4] = e2, [e1, e5] = −2e1, [e1, e6] = e1,

[e2, e3] = −e4, [e2, e5] = −e2, [e2, e6] = −e2, [e3, e5] = 2e3,

[e3, e6] = −e3, [e4, e5] = e4, [e4, e6] = −2e4.

We have dim[g, g] = 5, so that g is not perfect. For a given CPA-structure we know by Theorem
3.4 that p · g = 0 for the perfect subalgebra p = span{e1, . . . , e5}. It is now easy to see that the
CPA-structure on g is trivial.
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On the other hand we will show that every solvable Lie algebra g admits a non-trivial CPA-
structure. Here we distinguish two cases, namely whether or not g has trivial center.

Proposition 3.7. Let g be a solvable Lie algebra with trivial center. Then g admits a non-trivial
nil-inner CPA-structure.

Proof. By Lie’s theorem there exists a nonzero common eigenvector v ∈ g and a linear functional
λ : g→ C such that [x, v] = λ(x)v for all x ∈ g. We have

λ([x, y])v = [[x, y], v]

= [x, [y, v]]− [y, [x, v]]

= (λ(x)λ(y)− λ(y)λ(x))v

= 0.

Hence x ·v y := [x, [y, v]] = λ(x)λ(y)v defines a CPA-structure on g. It is non-trivial, because
otherwise the center of g were non-trivial. �

Proposition 3.8. Let g be a non-perfect Lie algebra with non-trivial center. Then g admits a
non-trivial CPA-structure.

Proof. Suppose first that Z(g)∩ [g, g] 6= 0, and select a nonzero z from it. Since g is not perfect
we may choose a 1-codimensional ideal I of g with I ⊇ [g, g]. Fix a basis (e2, . . . , en) for I
and a generator e1 for the vector space complement of I in g. Then g is a semidirect product
Ce1 n I. Using the nonzero z ∈ Z(g) ∩ [g, g] define a non-trivial CPA-structure on g by(

n∑
i=1

αiei

)
·

(
n∑
i=1

βiei

)
:= α1β1z.

Now assume that Z(g) ∩ [g, g] = 0. Then g admits an abelian factor, because Z(g) 6= 0. So
we can write g = Ce1 ⊕ h for some ideal h in g. Let (e2, . . . , en) be a basis of h and define a
non-trivial CPA-structure on g as before but replacing z by e1 on the RHS. Note that in both
cases the CPA-structure is even associative. �

Corollary 3.9. Let g be a non-trivial solvable Lie algebra. Then g admits a non-trivial CPA-
structure.

4. CPA-structures on complete Lie algebras

For this section we will assume that all Lie algebras are complex. The following definition is
given in [18].

Definition 4.1. A complete Lie algebra g is called simply-complete, if no non-trivial ideal in g
is complete.

Meng [18] reduced the study of complete Lie algebras to that of simply-complete Lie algebras.
He showed the following decomposition.

Proposition 4.2. (1) Let g1, . . . , gn be simply-complete Lie algebras. Then the direct sum
g = g1 ⊕ · · · ⊕ gn is also a complete Lie algebra.
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(2) Let g be a complete Lie algebra. Then there exist simply-complete ideals g1, . . . , gn such
that g = g1 ⊕ · · · ⊕ gn.

(3) Such a decomposition of a complete Lie algebra is unique up to a permutation of the
simply-complete ideals.

We can reduce CPA-structures on complete Lie algebras to CPA-structures on simply-
complete Lie algebras as follows.

Proposition 4.3. Let g1, . . . , gn be simply-complete Lie algebras, each with a CPA-structure.
Then the direct Lie algebra sum admits a CPA-structure, which is given componentwise:

(x1, . . . , xn) · (y1, . . . , yn) = (x1 · y1, . . . , xn · yn).

Conversely, for any complete Lie algebra g = g1 ⊕ · · · ⊕ gn with simply-complete ideals gi, any
CPA-structure on g is given as above.

Proof. The first part is clear. For the second part we need only show that gi · gj ⊆ gi ∩ gj.
Because all derivations of g are inner, we have gi · gj ⊆ Der(g)(gj) ⊆ gj, and because the
CPA-structure is commutative also gi · gj ⊆ gi. �

For the description of CPA-structures on complete Lie algebras g we will have two cases,
namely g metabelian or not.

Proposition 4.4. The only simply-complete metabelian Lie algebra is isomorphic to r2(C),
the Borel subalgebra of sl2(C). The classification of all CPA-structures on r2(C) is given in
Example 2.16.

Proof. It follows from [21] that every finite-dimensional metabelian Lie algebra g with Der(g) =
ad(g) is isomorphic to a direct sum r2(C)⊕· · ·⊕r2(C). Since g is assumed to be simply-complete,
we have that g = r2(C). The CPA-structures on this algebra have been classified in Example
2.16. �

For the non-metabelian case we will need the following result.

Proposition 4.5. Let I be an ideal in g with center z = Z(I) such that g/I is abelian. Then
every 1-cocycle f ∈ Z1(g/I, z) defines an associative nil-inner CPA-structure on g by

x · y = [f(x), y]

for all x, y ∈ g.

Proof. Note that z is a characteristic ideal of I, and hence an ideal of g. Therefore g acts on z
by the adjoint action x ◦ z = [x, z] for all x ∈ g and z ∈ z. Since I acts trivially on z we obtain
an induced action on the quotient g/I on z by x ◦ z = [x, z]. Now Z1(g/I, z) consists of linear
maps f : g/I → z satisfying

f([x, y] = −y ◦ f(x) + x ◦ f(y)

Since g/I is abelian, the condition reduces to [f(x), y] = [f(y), x] for all x, y ∈ g. We claim that
x · y = [f(x), y] satisfies the axioms (4), (5), (6), of a CPA-structure. By the last remark we
have x ·y = y ·x, so that (4) is satisfied. All products x · (y · z) = [f(x), [f(y), z]] ⊆ [z, z] = 0 are
zero, so that the CPA-structure is nil-inner and associative. Furthermore we have [x, y] · z =
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[f([x, y]), z] = 0, and hence (5) is satisfied. Finally the Jacobi identity for the bracket on I
implies that

x · [y, z] = [f(x), [y, z]]

= [[f(x), y], z] + [y, [f(x), z]]

= [x · y, z] + [y, x · z].

Hence also (6) is satisfied. �

Remark 4.6. Proposition 4.5 once more implies that every non-trivial solvable Lie algebra g
with trivial center admits a non-trivial CPA-structure. In fact, take I = [g, g], so that the
quotient g/I is abelian. By assumption I 6= 0, and I is nilpotent, so that z := Z(I) is non-
trivial. Since g has trivial center we have [[z, g], g]] 6= 0, so that x · y := [[z, x], y] defines a
non-trivial CPA-structure for any z 6= 0 in z.

Definition 4.7. For a Lie algebra g let g1 = g, and gt = [g, gt−1] for t ≥ 2 define the charac-
teristic ideal

g∞ =
⋂
t∈N

gt.

We have g∞ = 0 if and only if g is nilpotent. For the other extreme we have g∞ = g if and
only if g is perfect.

Lemma 4.8. Let g be a Lie algebra with nilradical n = nil(g). If n = [g, n] then we have
n ⊆ g∞ = [g, g]. Conversely, if n ⊆ g∞ = [g, g] and g is algebraic, then n = [g, n].

Proof. Let r = rad(g) and s a Levi complement to r in g. Then n = [g, n] implies n = [g, r] =
rad(g2). By induction we obtain rad(gt) = n for all t ∈ N. Hence we have rad(g∞) = n, and
sn n ⊆ g∞ ⊆ [g, g] ⊆ sn n. This means that [g, g] = g∞ = sn n.
Conversely, n admits a complementary subalgebra q in g acting fully reducibly on g, since g is
algebraic. We have r = Z(q)n n, and, by assumption, n ⊆ [g, g] so that n = [g, r]. This implies

n = [g, r] = [g, Z(q) + n]

= [g, n] + [g, Z(q)]

= [g, n] + [n, Z(q)]

= [g, n].

�

Lemma 4.9. Let x · y = [ϕ(x), y] be a nil-inner CPA-structure on g. Then ϕ(g) ⊆ nil(g) and
ϕ(g∞) = 0.

Proof. We already have seen that x ·y = y ·x is equivalent to the identity [ϕ(x), y] = −[x, ϕ(y)].
This yields ad(ϕ(x))m(y) = −ad(x)m(ϕ2m−1(y)) by induction on m. Since ϕ is nilpotent, this
implies ϕ(g) ⊆ nil(g). By a similar induction we obtain the identity

ϕ([x1, . . . , xt, y]) = −[x1, . . . , xt, ϕ
2t(y)]

for all t ≥ 1 and xi, y ∈ g. Since ϕ is nilpotent we obtain ϕ(gt) = 0 for t large enough. In
particular we have ϕ(g∞) = 0.

�
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Theorem 4.10. Let g be a simply-complete non-metabelian Lie algebra. Suppose that g satisfies
the condition nil(g) = [g, nil(g)]. Denote by z the center of the ideal I = [g, g]. Then there is a
bijective correspondence between CPA-structures on g and elements z ∈ z, given by

x · y = [[z, x], y].

Proof. We first show that every CPA-structure on g comes from a 1-cocycle in Z1(g/I, z).
By Corollary 2.9 any CPA-structure on g is inner. Since simply-complete Lie algebras are
indecomposable by Theorem 3.2 of [18], and g is not metabelian, any CPA-structure on g is
nil-inner by Theorem 2.14. Let ϕ be a nilpotent endomorphism of g such that x · y = [ϕ(x), y]
for all x, y ∈ g. By Lemma 4.8 we have

n ⊆ [g, g] = g∞ = I,

By Lemma 4.9 we have ϕ(I) = 0. The commutativity of the CPA-structure then gives

[ϕ(g), I] ⊆ g · I = I · g = [ϕ(I), g] = 0.

Again by Lemma 4.9 we obtain ϕ(g) ⊆ nil(g) ⊆ I. Both conditions together yield ϕ(g) ⊆ z.
Denote by g = g/I the abelianization of g. Since ϕ(I) = 0 we may identify ϕ with ϕ : g → z
given by ϕ(x) = ϕ(x) for all x ∈ g. In particular we have x · y = [ϕ(x), y] for all x, y ∈ g. Now
z becomes a g-module by x ◦ z := [z, x] for all x ∈ g and z ∈ z. Furthermore, ϕ is a 1-cocycle
of the abelian Lie algebra g with coefficients in z:

ϕ([x, y]) = ϕ(0) = 0 = x · y − y · x = −[x, ϕ(y)] + [y, ϕ(x)] = x ◦ ϕ(y)− y ◦ ϕ(x).

Conversely, any 1-cocycle f ∈ Z1(g, z) defines a CPA-structure on g by x · y = [f(x), y] by
Proposition 4.5.
Next we show that all such 1-cocycles are 1-coboundaries. Since g has trivial center we have
H0(g, z) = 0. Since g is abelian, this implies that H1(g, z) = 0 by Lemma 3 of [1], so that

Z1(g, z) = B1(g, z) = {f : g→ z | x 7→ x ◦ z = [[z, x], y]}.
We have shown that the elements z ∈ z give CPA-structures on g, and that there are no
others. Let us finish the proof by showing that the correspondence is bijective. Suppose that
z1, z2 define the same CPA-structure on g. Then [[z1, x], y] = [[z2, x], y] for all x, y, and hence
[z1, x] − [z2, x] ∈ Z(g) = 0 for all x ∈ g. This means that z1 − z2 ∈ Z(g) = 0, and we are
done. �

Remark 4.11. It is possible that the condition nil(g) = [g, nil(g)] of the Theorem is automatically
satisfied for complete Lie algebras g. We can formulate this condition in terms of the nilpotent
radical n(g) of a Lie algebra g , which is defined to be the intersection of all kernels of finite-
dimensional irreducible representations of g. It is known that

n(g) = [g, g] ∩ rad(g)] = [g, rad(g)] ⊆ nil(g).

The above condition for g is equivalent to saying that the nilpotent radical and the nilradical
of g coincide, i.e., that n(g) = nil(g) for complete Lie algebras.
In fact, Proposition 1, part (iii) in [14] states that [g, rad(g)] = nil(g) for all complete Lie
algebras, which would imply that nil(g) = [g, nil(g)]. However, we are not sure about this
claim. The proof is referred to the reference [4] in [14], where we could not find it.
For a decomposition g = g1⊕· · ·⊕gn in simply-complete ideals it is clear that nil(g) = [g, nil(g)]
holds if and only if nil(gi) = [gi, nil(gi)]
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We can summarize the preceding results as follows.

Theorem 4.12. Let g = g1 ⊕ · · · ⊕ gn be a complete Lie algebra satisfying the condition
nil(g) = [g, nil(g)], with simply-complete ideals gi. Then the CPA-structures on g are uniquely
determined by the CPA-structures on the ideals gi, which are given in Proposition 4.4 and
Theorem 4.10.

As an example, one can consider the Lie algebra of affine transformations of a n-dimensional
vector space V over K, given by

aff(V ) =

{(
A v
0 0

)
| A ∈ gln(K), v ∈ Kn

}
.

Corollary 4.13. All CPA-structures on aff(V ) are trivial for n ≥ 2.

Proof. Since g = aff(V ) is simply-complete by Theorem 4.2 of [18], and

nil(g) = V ⊆ sl(V ) n V = g∞,

and g is not metabelian for n ≥ 2, we can apply the above Theorem. Here we have Z([g, g]) = 0
for n ≥ 2, so that all CPA-structures are zero. �

We would also like to apply the results to parabolic subalgebras of semisimple Lie algebras.
The following result is proved in [18], Theorem 4.7.

Proposition 4.14. Let p be a parabolic subalgebra of a semisimple Lie algebra g. Then p is
complete. If g is simple, then p is simply-complete.

It is well known that the condition on the nilradical is satisfied in the parabolic case, e.g.,
see section 2 of [2].

Proposition 4.15. Let p be a parabolic subalgebra of a semisimple Lie algebra g. Then we
have nil(p) = [p, nil(p)].

Corollary 4.16. The CPA-structures on parabolic subalgebras of semisimple Lie algebras are
classified by Proposition 4.4 and Theorem 4.10.

In particular, we can review Example 3.6 in this context.

Example 4.17. The 6-dimensional parabolic subalgebra g of sl3(C) given in Example 3.6 admits
only the trivial CPA-structure.

With the notations of Theorem 4.10 we have s = 〈e1, e3, e5〉 acting on nil(g) = 〈e2, e4〉 by the
irreducible action of dimension 2. In particular we have Z(I) = Z(s n nil(g)) = 0, so that all
CPA-structures on g vanish.

Of course there are also parabolic subalgebras of simple Lie algebras admitting non-trivial
CPA-structures. Consider the parabolic subalgebra g of sl3(C) with basis

(e1, . . . , e5) = (E12, E13, E23, E11 − E22, E22 − E33).

Then we have [g, g] = 〈e1, e2, e3〉 and Z([g, g]) = 〈e2〉. Hence all products are given by
x · y = α[[e2, x], y] for α ∈ C.
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Example 4.18. All CPA-structures on the 5-dimensional parabolic subalgebra g of sl3(C) de-
fined above are given by

e4 · e4 = αe2,

e4 · e5 = e5 · e4 = αe2,

e5 · e5 = αe2.

Concerning the case distinction of metabelian or non-metabelian, we want to give an explicit
proof that the Borel subalgebra of a simple Lie algebra is metabelian if and only if the simple
Lie algebra has rank 1. The result also follows from [21].

Proposition 4.19. Let s be a simple Lie algebra and p a parabolic subalgebra of s. Then p is
metabelian if and only if s is of type A1 and p is a Borel subalgebra.

Proof. Suppose that p is a Borel subalgebra of A1. Then p is metabelian. Conversely suppose
that p is metabelian. Hence p is a solvable parabolic subalgebra of s, hence a Borel subalgebra,
which we denote by b now. Denote by n the nilradical of b. Since [b, b] = n it is enough to
show that n is abelian if and only if s is of type A1. However we have dimZ(n) = 1 for all
simple Lie algebras s, see [19] section 4, so that n is abelian if and only if n is 1-dimensional.
This is true if and only if s is of type A1, see table 2 in [19], which gives the dimensions of the
nilradicals of b for all simple Lie algebras. �

Remark 4.20. One might also wish to extend the results to parabolic subalgebras of reductive Lie
algebras. Let q be a parabolic subalgebra of a reductive Lie algebra g. Then Der(q) = L⊕ad(q)
as a Lie algebra direct sum, where L is the set of all linear transformations D : q→ Z(q) such
that D([q, q]) = 0, see [3]. Furthermore we have Z(q) = Z(g). However, the situation here is
more complicated than in the semisimple case.
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