Group Theory

— Exercises -
Exercises

Exercise 1. Let K be a field of characteristic different from 2. Show that the set of matrices

$$
A=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

with $a, b, c \in K$ forms a non-abelian subgroup of $G L_{3}(K)$. Find an explicit formula for all powers A^{n}, with $n \in \mathbb{Z}$.

Exercise 2. Show that $\operatorname{Aut}\left(\mathrm{S}_{3}\right) \cong \operatorname{Aut}\left(\mathrm{C}_{2} \times \mathrm{C}_{2}\right) \cong \mathrm{S}_{3}$.
Exercise 3. Determine (without proof) the number n of different groups of order 1536 . Show that n is not the sum of three integer cubes, but find integers x, y, z with $1536=x^{3}+y^{3}+z^{3}$.

Exercise 4. Determine the number of elements in the group $G L_{n}\left(\mathbb{F}_{q}\right)$.
Exercise 5. Show that every subgroup of the quaternion group Q_{8} is normal. Is this true for the dihedral group D_{4} ?

Exercise 6. Show that the groups \mathbb{Q} / \mathbb{Z} and \mathbb{R} / \mathbb{Q} cannot be isomorphic.
Exercise 7 - extra. Determine the order of the group $G=S L_{2}\left(\mathbb{F}_{3}\right)$, and show that G has exactly one 2 -Sylow subgroup.

Exercise 8. Show that the symmetric group S_{n} has a subgroup of index n for all $n \geq 1$.

Exercise 9. Show that every finite group can be embedded into a finite simple group.

Exercise 10. Show that there is no simple group of order 312.
Exercise 11. Show that the quaternion group Q_{8} cannot be written as a semidirect product of two non-trivial subgroups.

Exercise 12. Classify all groups which are a semidirect product of \mathbb{Z} and \mathbb{Z}. Show that there is one abelian group and one non-abelian group.

Exercise 13. Determine all composition series for the quaternion group Q_{8}.

Exercise 14- extra. Let d be a squarefree integer and $a, b \in \mathbb{Z}$. Show that the field extension $\mathbb{Q}(\sqrt{a+b \sqrt{d}}) \mid \mathbb{Q}$ is a Galois extension if and only if $\frac{a-b \sqrt{d}}{a+b \sqrt{d}}$ is a square in $\mathbb{Q}(\sqrt{d})$ and determine its Galois group in this case.

Exercise 15. Let $G=S_{7}$ and $x=(1234567), y=(265734)$ in G with $H:=\langle x, y\rangle$. Find a composition series for H and determine its quotients.

Exercise 16. Let G be a nilpotent group and H a non-trivial normal subgroup of G. Show that $H \cap Z(G)$ is non-trivial.

Exercise 17. Show that the infinite dihedral group D_{∞} is solvable.
Exercise 18. Show that D_{n} is solvable for all $n \in \mathbb{N}$, and nilpotent if and only if n is a power of two.

Exercise 19. Let G be a non-abelian group of order $p q$, where p and q are distinct primes. Show that G is solvable, but not nilpotent.

Exercise 20. Show that the projective special linear group $P S L_{2}\left(\mathbb{F}_{q}\right)$ is isomorphic to a subgroup of S_{q+1} and determine its order.

Exercise 21 - extra. Let G be a finite solvable group, all of whose Sylow subgroups are abelian. Prove that $Z(G) \cap G^{\prime}=1$.

Exercise 22. Let G be a nilpotent group of cube-free order n. Show that G is abelian.

Exercise 23. Let G be a finite group. Show that G is nilpotent if and only if $x y=y x$ for all $x, y \in G$ having relatively prime orders.

Exercise 24. Show that the group $P S L_{2}\left(\mathbb{F}_{3}\right)$ is isomorphic to A_{4} and that $P S L_{2}\left(\mathbb{F}_{5}\right)$ is isomorphic to A_{5}. Is $P S L_{2}\left(\mathbb{F}_{7}\right)$ also isomorphic to an alternating group?

Exercise 25. Show that the presentation

$$
\left\langle a, b, c \mid a^{3}=b^{3}=c^{4}=a c a c^{-1}=a b a^{-1} b c^{-1} b^{-1}=e\right\rangle
$$

defines the trivial group.
Exercise 26. Show that the infinite dihedral group $D_{\infty}=C_{2} * C_{2}$ has derived length 2 by computing D_{∞}^{\prime} and $D_{\infty}^{\prime \prime}$.

Exercise 27. Prove that every free group of rank greater than one has an infinite number of free generating sets.

Exercise 28-extra. Show that the presentation

$$
\left\langle a, b \mid a b^{2} a^{-1} b^{-3}=b a^{2} b^{-1} a^{-3}=e\right\rangle
$$

defines the trivial group.
Exercise 29. Let G be a group and denote by $\operatorname{Ab}(G)=G /[G, G]$ its abelianization. Show that $\operatorname{Ab}(G * H) \cong \operatorname{Ab}(G) \oplus \operatorname{Ab}(H)$.

Exercise 30. Let F_{n} denote the free group of rank n. Use exercise 26 to show that

$$
F_{n} /\left[F_{n}, F_{n}\right] \cong \mathbb{Z}^{n} .
$$

Exercise 31. Let $G=H * K$ with non-trivial subgroups H and K. Show that the center of G is trivial.

Exercise 32. Let $G=H *_{M} K$ with different subgroups H, K and M. Show that the center of G is contained in M.

Exercise 33. Let G, H and K be groups such that $G * H=G * K$. Does it follow that $H \cong K$? Give a proof or give a counterexample.

Exercise 34. Let A and B be matrices from $S L_{2}(\mathbb{Z})$ given by

$$
A=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right), B=\left(\begin{array}{ll}
3 & 5 \\
0 & 5
\end{array}\right) .
$$

Show that the semigroup generated by A and B under multiplication is not free.

Exercise 35- extra. Let $0 \rightarrow A \xrightarrow{\alpha} E \xrightarrow{\beta} G \rightarrow 1$ be a group extension of A by G and assume that A is abelian.
(a) For $x \in G$ choose an $e \in E$ such that $\beta(e)=x$. Then set $x \cdot a=e a e^{-1}$ for $a \in A$. Show that this is a well-defined action of G on A so that A becomes a G-module.
(b) Show that equivalent extensions of A by G give rise to the same action.

Exercise 36. Let $n \geq 1$ be an integer. Give group homomorphisms α and β such that

$$
0 \rightarrow \mathbb{Z} / n \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} / n^{2} \mathbb{Z} \xrightarrow{\beta} \mathbb{Z} / n \mathbb{Z} \rightarrow 0
$$

becomes a short exact sequence of abelian groups. For which n is this sequence split?

Exercise 37. Let $G=A_{5}$ be the alternating group on five letters and $A=\mathbb{Z} / 7 \mathbb{Z}$ be a trivial A_{5}-module. Compute $H^{n}(G, A)$ for $n=0,1,2$.

Exercise 38. Let G be a finite group and \mathbb{Q} be a G-module. Show that $H^{n}(G, \mathbb{Q})=0$ for all $n \geq 1$.

Exercise 39. Let G be a group and A be a G-module. Fix a τ in the center of G. Let $\varphi: Z^{1}(G, A) \rightarrow C^{1}(G, A)$ be the map $f \mapsto \varphi(f)$ where $\varphi(f)(\sigma)=\tau f(\sigma)-f(\sigma)$ for $\sigma \in G$. Show that $H^{1}(G, A)$ is annihilated by φ, i.e., $\varphi\left(Z^{1}(G, A)\right) \subseteq B^{1}(G, A)$.

Exercise 40. Determine the group $H^{2}(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z})$ by computing the 2cocycles and 2 -coboundaries, where $\mathbb{Z} / 2 \mathbb{Z}=\{1,-1\}$ acts nontrivially on \mathbb{Z}.

Exercise 41. Let \mathbb{Z} be a trivial \mathbb{Q}-module. Compute $H^{n}(\mathbb{Q}, \mathbb{Z})$ for $n=0,1$.
Exercise 42 - extra. Understand the notation of the following lemma and give a proof.

Shapiro's Lemma: Let H be a subgroup of a group G. For any H-module M, there is a caconical isomorphism

$$
H^{n}\left(G, \operatorname{Ind}_{H}^{G}(M)\right) \stackrel{\cong}{\rightrightarrows} H^{n}(H, M) .
$$

