Computational Commutative Algebra Exercises

Exercise 1. Find an integer solution of the equation

$$
x^{2}+y^{2}=z^{2}
$$

with $x=555555$ and $z-x<100000$.

Exercise 2. Find a solution of the matrix equation

$$
X^{4}+Y^{4}=Z^{4}
$$

in $M_{2}(\mathbb{Z})$, where each of X, Y, Z has at most two zero entries.

Exercise 3. Determine all positive integers n such that $\mathbb{Z} / n \mathbb{Z}$ is a PID. Describe the ideals of the ring $\mathbb{Z} / n \mathbb{Z}$ for all integers n.

Exercise 4. Let ζ_{3} be a primitive third root of unity. Show that the ring $\mathbb{Z}\left[\zeta_{3}\right]$ is a PID.

Exercise 5. Determine all units of the ring $\mathbb{Z}\left[\zeta_{3}\right]$ and show that $E\left(\mathbb{Z}\left[\zeta_{3}\right]\right) \cong C_{6}$.

Exercise 6. Let I and J be coprime ideals in a commutative ring R with unit. Show that the ideals I^{m} and J^{n} are coprime for all $m, n \in \mathbb{N}$. Is it true that $I^{m} J^{n}=I^{m} \cap J^{n}$?

Exercise 7-extra. Let $\theta=\frac{1+\sqrt{-19}}{2}$. Show that the ring $\mathbb{Z}[\theta]$ is not a Euclidean domain.

Exercise 8. Compute the radical of all ideals in the ring $\mathbb{Z} / n \mathbb{Z}$ for every $n \geq 1$. In particular, compute the nilradical of $\mathbb{Z} / n \mathbb{Z}$.

Exercise 9. Let $R=\mathbb{Z} / 6 \mathbb{Z}$ and $S=\{\overline{1}, \overline{2}, \overline{4}\}$. Show that the ring of fractions $S^{-1} R$ is well-defined and is isomorphic to the ring $\mathbb{Z} / 3 \mathbb{Z}$.

Exercise 10. Show that every subring R (containing 1) of \mathbb{Q} is Noetherian. Is every subring of $\mathbb{Z}[X]$ also Noetherian?

Exercise 11. Let A, B be rings (always commutative with 1) and $f: A \rightarrow B$ be a ring homomorphism. If J is an ideal of B, then the preimage $f^{-1}(J)=J^{c}$ is an ideal in A, called the contraction of J. If I is an ideal in A, the ideal I^{e} of B generated by $f(I)$ is called the extension of I. Show that the contraction of a prime ideal is always a prime ideal, while the extension of a prime ideal need not be a prime ideal.

Exercise 12. Let K be a field and I an ideal in $K[x, y, z]$ given by $I=(x y, x-y z)$. Show that

$$
I=(x, z) \cap\left(y^{2}, x-y z\right)
$$

is a primary decomposition of I.

Exercise 13. An affine algebraic set $X \subseteq \mathbb{A}^{n}$ is called irreducible if $X \neq \emptyset$ and X cannot expressed as $X=X_{1} \cup X_{2}$ with X_{1}, X_{2} affine algebraic sets different from X. Show that X is irreducible if and only if $I(X)$ is a prime ideal.

Exercise 14 - extra. Let K be an infinite field. Show that the irreducible algebraic sets in \mathbb{A}^{2} are given by by \mathbb{A}^{2} itself, any singleton $\{(a, b)\}$ for some $a, b \in K$, or by a set $V(f)$, where $f \in K[x, y]$ is an irreducible polynomial such that $V(f)$ is infinite.

Exercise 15. Let $V \subset \mathbb{A}^{m}$ and $W \in \mathbb{A}^{m}$ be two affine algebraic sets. Prove that their product set $V \times W \subset \mathbb{A}^{m+n}$ is an affine algebraic set, too.

Exercise 16. Let $J=\left(x^{2} y^{3}, x y^{4}\right) \subseteq K[x, y]$. Show that $\sqrt{J}=(x y)$ and determine the ideals $I(V(J))$ and $I(V(\sqrt{J}))$.

Exercise 17. Let X, Y be two affine algebraic sets in \mathbb{A}^{n} over an algebraically closed field K. Show that we have

$$
\begin{aligned}
& I(X \cup Y)=I(X) \cap I(Y) \\
& I(X \cap Y)=\sqrt{I(X)+I(Y)}
\end{aligned}
$$

Show that $I(X \cap Y)=I\left(X_{1}\right)+I\left(X_{2}\right)$ does not hold in general.

Exercise 18. Consider the polynomial ring $\mathbb{Q}[x, y]$ together with the lexicographic order and $y \prec x$. Let $f=x^{5}+y^{5}$ and $f_{1}=x^{3}+y^{2}, f_{2}=y^{2}+1$. Use the multivariate division algorithm to find (unique) polynomials $q_{1}, q_{2}, r \in \mathbb{Q}[x, y]$ such that $f=q_{1} f_{1}+q_{2} f_{2}+r$.

Exercise 19. Show that a monomial ideal I in $K\left[x_{1}, \ldots, x_{n}\right]$ is prime if and only if it is generated by some of the variables in $\left\{x_{1}, \ldots, x_{n}\right\}$.

Exercise 20. Let K be a field of characteristic zero. Find all solutions over K of the polynomial equations

$$
\begin{aligned}
x^{2} y+4 y^{2}-17 & =0 \\
2 x y-3 y^{3}+8 & =0 \\
x y^{2}-5 x y+1 & =0 .
\end{aligned}
$$

Test your answer by computing a Groebner basis for the ideal generated by these polynomials in $K[x, y]$ with a computer algebra system.

Exercise 21 - extra. Let K be a field of characteristic zero. Using resultants of polynomials find all solutions over K of the polynomial equations

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-6 & =0 \\
x^{3}+y^{3}+z^{3}-3 x y z+4 & =0 \\
x y+x z+y z+3 & =0 .
\end{aligned}
$$

Exercise 22. Which of the following subsets $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}$ of $\mathbb{Q}[x, y, z]$ are a Groebner basis for the ideal generated by the polynomials, with the lexicographic order?

$$
\begin{aligned}
\mathcal{G}_{1} & =\left\{x+y, y^{2}-1\right\} \text { for } x \prec y, \\
\mathcal{G}_{2} & =\left\{x^{2}+y^{2}-1, x y-1, x+x^{3}-y\right\} \text { for } x \prec y, \\
\mathcal{G}_{3} & =\left\{x y z-1, x-y, y^{2} z-1\right\} \text { for } x \prec y \prec z .
\end{aligned}
$$

Which sets are minimal or even reduced?

Exercise 23. Find polynomials $f, g, h \in \mathbb{Q}[x, y, z]$ such that the system of polynomial equations given by $f=g=h=0$ has exactly the following 5 solutions

$$
(0,0,0),(1,1,1),(-1,1,-1),(1,-1,2),(1,1,-2) .
$$

Exercise 24. Use the integer solutions to the Pell equation $X^{2}-2 Y^{2}=1$ with the units of the ring $\mathbb{Z}[\sqrt{2}]$ to show that there are infinitely many monic quadratic polynomials $f, g, h \in \mathbb{Z}[x]$ such that

$$
\left(\begin{array}{cc}
x^{2}-2 & f(x) \\
g(x) & h(x)
\end{array}\right) \in S L_{2}(\mathbb{Z}[x]) .
$$

Write down the first three matrices in $S L_{2}(\mathbb{Z}[x])$ of your construction corresponding to the positive integer solutions $(X, Y)=(3,2),(17,12),(99,70)$ of Pell's equation.

Exercise 25. Let R be an integral domain and I be a nonzero ideal. Let K be the quotient field of R. Show that $I \otimes_{R} K=K$.

Exercise 26. Let I and J be ideals in a ring R (always commutative with 1). Show that there is a unique R-module isomorphism

$$
R / I \otimes_{R} R / J \cong R /(I+J)
$$

where $\bar{x} \otimes \bar{y} \mapsto \overline{x y}$.

Exercise 27. Let $\varphi: M \rightarrow M$ be a surjective R-module homomorphism. Assume that M is a Noetherian R-module. Show that φ is an R-module isomorphism.

Exercise 28 - extra. Let R be a ring such that every localization R_{P} at a prime ideal P in R is Noetherian. Prove or disprove that R is Noetherian.

Exercise 29. Decide for each of the following rings R whether or not it is integrally closed and give a proof for it.

$$
\mathbb{Z}[\sqrt{-5}], \mathbb{Z}[\sqrt{5}], \mathbb{Z}[\sqrt{2}, \sqrt{3}], K[x, y] /\left(x^{2}-y^{3}\right) \cong K\left[t^{2}, t^{3}\right] .
$$

Exercise 30. Let K be a field. Determine the integral closure of the rings $K\left[t^{2}, t^{3}\right]$ and $K\left[t^{3}-t, t^{2}-t\right]$ in $K(t)$.

Exercise 31. A ring extension $A \subseteq B$ is called finite if B is finitely generated as an A-module. Find an example of an infinite integral ring extension.

Exercise 32. Show that the Lying Over Theorem and the Going Up Theorem don't hold for the ring extension $\mathbb{Z} \subset \mathbb{Q}$. Furthermore give an example for an integral ring extension $A \subset B=K[x, y]$, where the Going Down Theorem fails.

Exercise 33. Let d be a squarefree integer. Show that the ring $\mathbb{Z}[\sqrt{d}]$ has Krull dimension 1. However, such a ring is not a PID in general. Show that all rings $\mathbb{Z}[\sqrt{d}]$ for squarefree $d \leq-3$ are not UFD's.

Exercise 34. Which of the following rings is a DVR?

$$
\mathbb{Z}_{(p)}, \mathbb{Z}_{p}, \mathbb{C}[[x]], \mathbb{C}[[x, y]]
$$

Here \mathbb{Z}_{p} denotes the ring of p-adic integers.

Exercise 35- extra. Let R be a Dedekind domain and $S \subset R$ be a multiplicatively closed subset of R. Show that $S^{-1} R$ is a Dedekind domain if and only if there is a nonzero prime ideal P in R with $P \cap S=\emptyset$.

Exercise 36. Find a ring R which is a Noetherian integral domain and has Krull dimension one, but which is not a Dedekind ring.

Exercise 37. Find a ring R which is a a Noetherian integral domain and is integrally closed, but which is not a Dedekind ring.

Exercise 38. Find a ring R which is an integrally closed domain of Krull dimension one, but which is not a Dedekind ring.

Due: January 31, 2021

