
3 Electrostastics

The Coulomb law

Experimental evidence shows that material can have a property called elec-
trical charge existing in two versions, called positive and negative. Two
positive charges repell each other, and the same is true for two negative
charges, whereas two opposite charges attract each other. The strength of
the attracting or repelling force is proportional to the product of the two
charges and inversely proportional to the square of the distance between the
charges. These observations are collected in the Coulomb law

F12 =
1

4πε0

Q1Q2

|x1 − x2|2
x1 − x2

|x1 − x2|

for the force, which a charge Q2 at position x2 exerts on a charge Q1 at
position x1. The notation 1/(4πε0) for the proportionality constant is chosen
for later convenience. The information, if the charges are positive or negative
is contained in the signs of Q1 and Q2. Note that the dimension of charge
is determined by choosing the dimension of the proportionality constant ε0,
called the permittivity.

The force exerted by N charges Q1, . . . , QN at positions x1, . . . , xN on a
test charge q at position x is then given by

F (x) =
q

4πε0

N∑
i=1

Qi(x− xi)
|x− xi|3

.

The vector field E(x) = F (x)/q, i.e., the force per unit charge, is called the
electric field.

Our next aim is to pass from point charges as above to a continuous
charge distribution. For this purpose the space is split into small subdomains
Vj , j ∈ IIN with volume ∆Vj , such that IR3 = ∪∞j=1Vj and Vj ∩ Vk = {} for
j 6= k. Then all xi ∈ Vj are approximated by ξj ∈ Vj , and the formula for
the electric field becomes

E(x) =
1

4πε0

∞∑
j=1

x− ξj

|x− ξj |3
∑

xi∈Vj

Qi .

The inner sum is the total charge contained in the subdomain Vj . Represent-
ing the charge distribution by a charge density %(x), it can be approximated
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by ∑
xi∈Vj

Qi ≈ %(ξj)∆Vj ,

whence the expression for the electric field becomes a Riemann sum. In the
continuous limit ∆Vj → 0 we obtain

E(x) =
1

4πε0

∫
IR3

%(ξ)(x− ξ)
|x− ξ|3

dξ .

This is the continuum version of the Coulomb law. A simple computation
shows that the electric field is irrotational, i.e., it satisfies

∇× E = 0 . (3.1)

This implies that E can be written as a gradient. Actually E = −∇ϕ holds
with the electrostatic potential

ϕ(x) =
1

4πε0

∫
IR3

%(ξ)
|x− ξ|

dξ .

It is a basic result from the theory of partial differential equations that
−1/(4π|x|) is a fundamental solution of the Laplace operator in IR3. This
implies the Poisson equation

−ε0∆ϕ = % ,

or, written as an equation for the electric field,

ε0∇ · E = % . (3.2)

Moving charges

Assume a dynamic situation with a time dependent charge density %(x, t).
If no charges are created or lost, then the total charge in any control volume
Ω ⊂ IR3 can only change by a flux through the boundary ∂Ω. Writing the
flux per unit area as the normal (to ∂Ω) component of an electric current
density j(x, t), we arrive at the equation

d

dt

∫
Ω

%(x, t)dx = −
∫

∂Ω
j(x, t) · ν(x)dσ(x) ,
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with the outward unit normal ν(x) and the surface element dσ(x). Using
the divergence theorem, the surface integral on the right hand side can be
written as a volume integral. Then the arbitrariness of Ω implies the charge
continuity equation

∂%

∂t
+∇ · j = 0 . (3.3)

Stationary magnetic fields

Experiments also show another force connected to the presence of electrical
charges. It only occurs for moving charges. Consider a long straight wire
(direction n ∈ IR3, |n| = 1) carrying a constant electric current I ≥ 0
(dimension: charge/time). A moving (with velocity v) point charge q at
position x in the neighbourhood of the wire then experiences a force F with
the following properties: The magnitude |F | of the force is proportional to

• the speed |v| of the point charge,

• the charge q,

• the current I, and

• the inverse 1/|x⊥| of the distance of the point charge from the wire,
where x⊥ is the vector from the nearest point on the wire to x.

The direction of F is determined by the requirements that

• it is orthogonal to v and

• it lies in the plane spanned by n and x⊥.

These requirements lead to the formula

F =
µ0

2π

qI

|x⊥|2
v × (n× x⊥) .

Finally, the experiments show that the proportionality constant (written
as µ0/(2π) for later convenience) is positive (µ0 > 0). The part of the
information in F , only depending on the position of the point charge is the
magnetic field

B =
µ0

2π

I(n× x⊥)
|x⊥|2

. (3.4)
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The above formula gives the magnetic field produced by the electric current
in the whole wire. In the following we shall generalize it to a situation with
an arbitrary current density distribution. For an arbitrary point ξ on the
wire we observe the geometric relations

n× x⊥ = n× (x− ξ) , s = (x− ξ) · n , s2 + |x⊥|2 = |x− ξ|2 , (3.5)

where s is the signed distance between the nearest point to x on the wire
and ξ. The idea is to split the wire into small pieces of length ∆s and to
write the magnetic field as a sum of contributions originating from these
pieces. For these contributions we make the ansatz

∆B =
µ0

2π
In× (x− ξ)f(|x− ξ|2)∆s .

Then, in the limit ∆s → 0, the function f has to be chosen such that

B =
µ0

2π
In× (x− ξ)

∫ ∞

−∞
f(s2 + |x⊥|2)ds

gives the result (3.4). The vector product is outside the integral since it
is independent of ξ by (3.5). A straightforward integration shows that the
choice f(z) = 1/(2z3/2) does the job. This way of writing the magnetic field
allows for a straightforward generalization to a wire which is not straight
but has the form of a general curve C:

B =
µ0

4π
I

∫
C

n(ξ)× (x− ξ)
|x− ξ|3

ds(ξ) .

Now n(ξ) is the normalized tangent vector at the point ξ on the curve, and
ds(ξ) is the length element.

Even more generally, me may think of a tube filled with wires with
orthogonal cross section R such that the current is given by a surface integral
of the current density j = |j|n:

I =
∫

R
|j|dσ

Using this in the computation of the magnetic field and combining the sur-
face integral with the line integral to obtain a volume integral, we arrive at
the Biot-Savart law

B(x) =
µ0

4π

∫
IR3

j(ξ)× (x− ξ)
|x− ξ|3

dξ .
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This formula we rewrite as

B(x) =
µ0

4π

∫
IR3
∇x

1
|x− ξ|

× j(ξ)dξ = ∇×A ,

with the vector potential

A(x) =
µ0

4π

∫
IR3

j(ξ)
|x− ξ|

dξ .

This immmediately implies

∇ ·B = 0 . (3.6)

We again use the occurrence of the fundamental solution of the Laplacian
to deduce

−∆A = µ0j ,

where the Laplacian on the left hand side is applied componentwise to the
vector field A.

In all this we assume a stationary charge distribution satisfying ∂%
∂t = 0

and, thus, by the charge continuity equation (3.3), ∇ · j = 0. Then the
vector potential satisfies

∇ ·A(x) =
µ0

4π

∫
IR3

j(ξ) · ∇x
1

|x− ξ|
dξ =

µ0

4π

∫
IR3

j(ξ) · ∇ξ
1

|x− ξ|
dξ

= −µ0

4π

∫
IR3
∇ · j(ξ) 1

|x− ξ|
dξ = 0 .

In this computation the symmetry of 1/|x−ξ| with respect to its arguments
x and ξ was used as well as an integration by parts. Now the vector identity
∇× (∇×A) = ∇(∇ ·A)−∆A can be used to derive the Ampère law

∇×B = µ0j . (3.7)

It should be noted that a vector potential A′ is not determined uniquely by
the equation B = ∇ × A′. By ∇ × ∇χ = 0, there is an arbitrary additive
gradient field: A′ = A+∇χ. The choice of χ is called a gauge. The Coulomb
gauge used here is characterized by the side condition ∇ ·A = 0.

The force F = qv×B(x) caused by the magnetic field acting on a charge
q at position x and moving with velocity v, is called the Lorentz force.
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4 Special relativity

The Galilean invariance of space-time contradicts experimental evidence
that the speed of light is the same in different reference frames. The theory
of relativity is a rather straightforward replacement of Galilean invariance
by something else (Lorentz invariance) such that this evidence is respected.

As a first step it is assumed that the transformation to a new reference
frame (coordinates (x′, y′, z′, t′)) moving with speed v in the x-direction com-
pared to the old reference frame (coordinates (x, y, z, t)) is described by a
linear transformation

x′ = α(x− vt) , y′ = y , z′ = z , t′ = βx + γt ,

leaving the y- and z-directions uneffected. Three more requirements will
determine the transformation uniquely:

• Volumes in space-time are not changed by the transformation.

• In the same way the origin x′ = 0 of the new frame moves with speed
v in the old frame (i.e., x = vt), the origin x = 0 in the old frame
moves with speed −v in the new frame (i.e., x′ = −vt′).

• The speed of light c is invariant under the transformation.

The first condition leads to the requirement that the determinant of the
Jacobian is equal to one: α(γ+βv) = 1. By setting x = 0 and x′+vt′ = 0 in
the transformation, it is easily seen that the second condition requires α = γ.
Finally, x = ct and x′ = ct′ hold at the same time, iff α(c−v)−c(βc+γ) = 0
holds. These equations uniquely determine the Lorentz transformation

x′ = γ(x− vt) , t′ = γ(t− vx/c2) , with γ = (1− v2/c2)−1/2 . (4.8)

The existence of the Lorentz factor γ requires one of the basic facts of special
relativity: Nothing can be faster than the speed of light: |v| ≤ c.

It is obvious that, if the relative speed v of the reference frames is small
compared to the speed of light, the Lorentz transformation can be approxi-
mated by the Galilean transformation

x′ = x− vt , t′ = t .
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5 Electrodynamics – the Maxwell Equations

The aim of this section is the formulation of a Lorentz invariant theory for
the dynamic behaviour of electric charges. We start by examining the charge
continuity equation (3.3):

∂%

∂t
+∇ · j = 0 .

Considering a Lorentz transformation (4.8), the partial derivatives transform
according to

∂

∂t
= γ

(
∂

∂t′
− v

∂

∂x′

)
,

∂

∂x
= γ

(
∂

∂x′
− v

c2

∂

∂t′

)
.

In terms of the new space-time variables, the continuity equation then be-
comes

γ
∂

∂t′

(
%− v

c2
j1

)
+ γ

∂

∂x′
(j1 − v%) +

∂j2

∂y′
+

∂j3

∂z′
= 0 .

With the transformation rule

%′ = γ

(
%− v

c2
j1

)
, j′1 = γ(j1 − v%) , j′2 = j2 , j′3 = j3 , (5.9)

the continuity equation is Lorentz invariant, i.e., invariant under Lorentz
transformations:

∂%′

∂t′
+∇′ · j′ = 0 ,

with ∇′ = ∇x′ . Note that the 4-vector (%, j) transforms in the same way as
(t, x).

Now we start with the equations for the electric and magnetic fields in
stationary (∂%/∂t = 0) situations (3.1), (3.2), (3.6), (3.7):

ε0∇ · E = % , ∇×B = µ0j , (5.10)
∇× E = 0 , ∇ ·B = 0 . (5.11)

The second of the inhomogeneous equations (5.10) cannot remain valid in
an instationary situation since ∇ · j = −∂%/∂t 6= 0 contradicts the vector
identity ∇·(∇×B) = 0. Combining the Poisson equation and the continuity
equation gives

∇ ·
(

j + ε0
∂E

∂t

)
= 0 .
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Thus, the displacement current density ε0∂E/∂t provides a correction to
obtain a divergence free quantity. The inhomogeneous Maxwell equations

ε0∇ · E = % , ∇×B = µ0j + ε0µ0
∂E

∂t
(5.12)

are candidates for a nonstationary version of (5.10) compatible with the
continuity equation. We carry out a Lorentz transformation in the first
equation and in the first component of the second equation:

γ
∂E1

∂x′
− γv

c2

∂E1

∂t′
+

∂E2

∂y′
+

∂E3

∂z′
=

%

ε0
,

∂B3

∂y′
− ∂B2

∂z′
= µ0j1 + ε0µ0γ

(
∂E1

∂t′
− v

∂E1

∂x′

)
.

We rewrite this system by first eliminating ∂E1/∂t′ and then ∂E1/∂x′:

∂E1

∂x′
+ γ

∂

∂y′

(
E2 −

v

ε0µ0c2
B3

)
+ γ

∂

∂z′

(
E3 +

v

ε0µ0c2
B2

)
=

γ

ε0

(
%− v

c2
j1

)
,

γ
∂

∂y′
(B3 − ε0µ0vE2)− γ

∂

∂z′
(B2 + ε0µ0vE3) = µ0γ(j1 − v%) + ε0µ0

∂E1

∂t′
.

The second and third component of the second equation in (5.12) give

∂B1

∂z′
− γ

∂

∂x′
(B3 − ε0µ0vE2) = µ0j2 + ε0µ0γ

∂

∂t′

(
E2 −

v

ε0µ0c2
B3

)
,

γ
∂

∂x′
(B2 + ε0µ0vE3)−

∂B1

∂y′
= µ0j3 + ε0µ0γ

∂

∂t′

(
E3 +

v

ε0µ0c2
B2

)
.

With the transformation rules (5.9) and

E′
1 = E1 , E′

2 = γ

(
E2 −

vB3

ε0µ0c2

)
, E′

3 = γ

(
E3 +

vB2

ε0µ0c2

)
,(5.13)

B′
1 = B1 , B′

2 = γ(B2 + ε0µ0vE3) , B′
3 = γ(B3 − ε0µ0vE2) , (5.14)

the inhomogeneous Maxwell equations are obviously Lorentz invariant.
We still have to find instationary versions of the homogeneous equations

(5.11). We start by rewriting the second component of the curl of E:

(∇× E)2 =
∂E1

∂z′
− γ

∂E3

∂x′
+

γv

c2

∂E3

∂t′
= (∇′ × E′)2 +

γv

ε0µ0c2

∂B2

∂x′
+

γv

c2

∂E3

∂t′
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Now the relations between partial derivatives are used to replace the deriva-
tive with respect to x′ by derivatives with respect to t and t′. This gives

(∇× E)2 +
1

ε0µ0c2

∂B2

∂t
= (∇′ × E′)2 +

1
ε0µ0c2

∂B′
2

∂t′
+

γv

c2

(
1

ε0µ0c2
− 1

)
E3 .

The term on the left hand side is therefore Lorentz invariant iff

ε0µ0c
2 = 1

holds, which we shall assume from now on. This suggests the homogeneous
Maxwell equations

∇ ·B = 0 , ∇× E = −∂B

∂t
(5.15)

as the instationary version of (5.11). Computations similar to the above
show the Lorentz invariance of this system with the transformation rules

E′
1 = E1 , E′

2 = γ(E2 − vB3) , E′
3 = γ(E3 + vB2) ,

B′
1 = B1 , B′

2 = γ

(
B2 +

v

c2
E3

)
, B′

3 = γ

(
B3 −

v

c2
E2

)
,

for the electric and magnetic fields. As a final result we collect the Maxwell
equations of electrodynamics (5.12), (5.15):

ε0∇ · E = % , ∇×B = µ0j +
1
c2

∂E

∂t
,

∇ ·B = 0 , ∇× E = −∂B

∂t
.
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