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1 The formulation of quantum mechanics

All physical theories are based on fundamental laws formulated in a math-
ematical framework and on correspondence rules mapping elements of the
mathematical theory to physical objects. Compared to classical mechanics,
the mathematical framework for quantum mechanics is difficult and the cor-
respondence rules are less intuitive. We start be providing the mathematical
basis for the Schrödinger representation of quantum mechanics.

Mathematical prerequisites

A vector spaceH over the field C of complex numbers, equipped with a scalar
product 〈·, ·〉, which is complete with respect to the norm ‖ψ‖ :=

√
〈ψ,ψ〉

induced by the scalar product, is called a Hilbert space.
A Hilbert space H is called separable, if it contains a denumerable com-

plete orthonormal system, i.e. a sequence {ui}i∈IIN ⊂ H such that

(i) 〈ui, uj〉 = δij ∀ i, j ∈ IIN ,

(ii) ψ =
∞∑
i=1

〈ψ, ui〉ui ∀ψ ∈ H .

A linear map A : D(A) ⊂ H → H is called a linear operator in H. It is
bounded if there exists a constant M ≥ 0, such that

‖Aψ‖ ≤M‖ψ‖ ∀ψ ∈ H .

Bounded linear operators can always be extended to H, and therefore for
bounded linear operators we shall always consider the situation D(A) = H.

A bounded linear operator is nonnegative, iff

〈Aψ,ψ〉 ≥ 0 ∀ψ ∈ H .
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Let A be a nonnegative operator and {ui}i∈IIN a complete orthonormal set.
Then the trace of A is defined by (the finite or infinite value)

tr(A) =
∞∑
i=1

〈Aui, ui〉 .

A simple computation shows that the value of the trace is independent
from the choice of the complete orthonormal system. With a little care
this definition can be extended to bounded but not necessarily nonnegative
operators. Operators with a finite trace are called trace (class) operators.

For a linear operator A, the adjoint operator A∗ is defined by

〈A∗u, v〉 = 〈u,Av〉 ∀u ∈ D(A∗), v ∈ D(A) ,

where the domain of A∗ is defined by

D(A∗) = {u ∈ H : ∃w ∈ H : 〈u,Av〉 = 〈w, v〉 ∀ v ∈ D(A)} .

By the Riesz theorem, D(A∗) = H holds for all bounded operators A. A
bounded operator U satisfying UU∗ = U∗U = I is called unitary. Under a
unitary transformation, the scalar product is invariant:

〈Uu,Uv〉 = 〈u, v〉 ∀u, v ∈ H .

A linear operator A is called self adjoint, iff A∗ = A and D(A∗) = D(A)
holds. Symmetry, i.e.,

〈Au, v〉 = 〈u,Av〉 ∀u, v ∈ D(A) ,

is neccessary for self adjointness. Obviously, for bounded operators it is also
sufficient.

The resolvant set of a linear operator A is the set of all λ ∈ C such that
the resolvant

R(λ,A) := (λI −A)−1

is a bounded operator. The complement (in C) of the resolvant set is called
the spectrum of A and is denoted by σ(A). Self adjoint operators A satisfy
σ(A) ⊂ IR.

The point spectrum σp(A) ⊂ σ(A) is the set of all eigenvalues, i.e.,

λ ∈ σp(A) ⇐⇒ ∃u ∈ D(A), u 6= 0 : Au = λu .
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It has to be noted that in general the inclusion σp(A) ⊂ σ(A) is strict and
that, in particular, a continuous spectrum may occur along with a discrete
point spectrum.

For a self adjoint operator A in a finite dimensional Hilbert space (say,
dimH = n), there exists an orthonormal basis {u1, . . . , un} of H consisting
of eigenvectors of A, i.e., Auk = λkuk, k = 1, . . . , n. Denoting the projection
onto the k-th eigenspace of A by Pku = 〈u, uk〉uk, we have the formula

A =
n∑

k=1

λkPk , (1.1)

which can be written in the form

A =
∫ ∞

−∞
λ dE(λ) , (1.2)

with the spectral family of projections

E(λ) =
∑

λk≤λ

Pk .

The spectral family satisfies the properties

(i) E(λ)E(µ) = E(λ) for λ ≤ µ ,

(ii) E(−∞) = 0 , E(∞) = I , (1.3)
(iii) E(λ+ 0) = E(λ) .

This setting can be transferred to the infinite dimensional case. The spectral
theorem asserts that for self adjoint operators in arbitrary Hilbert spaces a
spectral family of projections with the properties (1.3) exists, such that
(1.2) holds. The differential dE(λ) vanishes away from σ(A) and, thus, the
integral in (1.2) only contains contributions from the spectral values of A.

The spectral theorem provides a framework for applying functions to self
adjoint operators:

f(A) :=
∫ ∞

−∞
f(λ)dE(λ) .

The postulates

One of the experimental observations leading to the development of quantum
mechanics was the fact that certain physical quantities, which should take
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values from a continuum according to classical physics, take only discrete (or
quantized) values in certain experiments. This is the case, for example, for
the energy emitted by an electron in an atom. Free electrons, on the other
hand, have a continuous range of energies. This should be a motivation for
the first two postulates:

Postulate 1: To every quantum mechanical system there corresponds
a separable Hilbert space H.

Postulate 2: Every physical quantity (observable) is represented by a
self adjoint operator A in H. The physical quantity can only take values in
the spectrum of A.

Another experimental observation shows that the outcome of experi-
ments of quantum mechanical systems cannot be predicted deterministically,
but only in a probabilistic sense. The same could be said within the frame-
work of classical mechanics as a result of measurement errors and/or the
complexity of a system. In quantum mechanics, however, the probabilistic
nature is seen as a basic principle and, therefore, has to be part of every
quantum mechanical theory.

The state of a system is therefore always understood as the description of
an ensemble of systems with identical experimental conditions. To motivate
the representation of states, let us consider a situation with a finite dimen-
sional H and a self adjoint operator A with spectral decomposition (1.1).
We shall compute the expected value of the observable corresponding to A.
By postulate 2, the observable can only take one of the values λ1, . . . , λn.
If the system is in a fixed state, these values are taken with probabilities
p1, . . . , pn ≥ 0 (p1 + · · ·+ pn = 1). The expected value of A is, thus,

〈A〉 =
n∑

k=1

pkλk =
n∑

k=1

pk〈Auk, uk〉 = tr(%A) ,

with %ij =
n∑

k=1

pkuk,iuk,j .

The operator % is nonnegative and satisfies tr(%) = 1.
Postulate 3: The state of a quantum mechanical system is represented

by a nonnegative trace operator % with tr(%) = 1, the state operator (or
density matrix). The expectation value of an observable A is given by

〈A〉 = tr(%A) .
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The definition of the probabilistic setting is completed by using the spec-
tral family E(λ) corresponding to the observable A. We define the distribu-
tion function for A by

prob(A ⊂ (−∞, λ]) = tr(%E(λ)) .

The spectral theorem shows that this is consistent with the formula for the
expectation value in postulate 3.

The properties of the state operator immediately imply σ(%) ⊂ [0, 1].
The projection onto a normalized vector ψ ∈ H, ‖ψ‖ = 1, defines a pure
state

%u = 〈u, ψ〉ψ .

For a pure state, the formula for the distribution function and for the ex-
pectation value is simple:

prob(A ⊂ (−∞, λ]) = 〈E(λ)ψ,ψ〉 , 〈A〉 = 〈Aψ,ψ〉 .

Non-pure states are called mixed states. The spectral theorem applied to
state operators has the interpretation that mixed states can be written as
convex combinations of pure states (at least in the case of a discrete σ(%) =
σp(%)).
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Note that for arbitrary real ω, ψ and eiωψ define the same state. For a
pure state, the vector ψ is only unique up to a phase factor eiωψ.

Space-time symmetries

We aim at a nonrelativistic theory, invariant with respect to the Galilei
group. A general Galilei transformation τ we write as(

x′

t′

)
= τ

(
x
t

)
=

(
R1(ϑ1)R2(ϑ2)R3(ϑ3)x+ a+ vt

t+ s

)
. (1.4)

Here Rj(ϑj) is an orthogonal matrix describing a rotation by the angle ϑj

around the xj-axis. So the Galilei transformation consists of a rotation, a
translation by the vector a, a velocity shift by the velocity v, and a time
shift by s. It can be further decomposed into 10 basic transformations, each
depending on a scalar parameter. All these basic transformations T (λ) with
scalar parameter λ satisfy the group properties T (0) = I, T (λ1 + λ2) =
T (λ1)T (λ2), and they are continuous with respect to the parameter.

Requiring Galilei invariance of our theory, we represent Galilei transfor-
mations by unitary operators Uτ and the basic transformations by groups of
unitary operators in H (see below). The combination of two Galilei trans-
formations τ1 and τ2 can be represented by either Uτ1τ2 or by Uτ1Uτ2 . For
a normalized ψ, the vectors Uτ1τ2ψ and Uτ1Uτ2ψ have to represent the same
pure state. This leads to the requirement

Uτ1τ2 = eiω(τ1,τ2)Uτ1Uτ2 , (1.5)

with a phase factor eiω(τ1,τ2).

Mathematical sidestep: continuous groups of unitary operators

A family {U(s) : s ∈ IR} of bounded operators in H is called a continuous
group, iff

U(0) = I , U(s1 + s2) = U(s1)U(s2) ,
lim
s→0

U(s)u = u ∀u ∈ H .

The generator K of a continuous group is defined by

iKu := lim
s→0

U(s)u− u

s
,
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for all u ∈ D(K), i.e., such that the limit on the right hand side exists. We
write U(s) = eiKs. It can be shown that u(s) = eiKsu0 solves the initial
value problem

du

ds
= iKu , u(0) = u0 .

Let {U(s) : s ∈ IR} be a continuous group of unitary operators and consider
the identity

0 =
U(s)∗U(s)− I

s
= U(s)∗

U(s)− I

s
+
U(s)∗ − I

s
.

For u, v ∈ D(K), we apply the right hand side to u and take the scalar
product with v:

0 =
〈
U(s)u− u

s
, U(s)v

〉
+
〈
u,
U(s)v − v

s

〉
.

The limit s→ 0 gives

〈iKu, v〉+ 〈u, iKv〉 = 0 ,

showing that the generators of continuous groups of unitary operators are
symmetric.

In the following table we introduce the names of the generators of the
groups of unitary operators corresponding to the basic Galilei transforma-
tions:

transformation group
x→ Rj(ϑj)x exp(iϑjJj)
xj → xj + aj exp(−iajPj)
xj → xj + vjt exp(ivjGj)
t→ t+ s exp(isH)

The signs in the exponents are just conventions. The 10 generators in
the right column are also denoted by K1, . . . ,K10. In the following, the
requirement (1.5) will be used to derive relations between the Kn. However,
the computations are purely formal. They would only be rigorously justified,
if the generators were bounded operators.
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Commutation relations will be derived by considering transformations of
the form

eiεKmeiεKne−iεKme−iεKn = I + ε2[Kn,Km] +O(ε3) ,

where [·, ·] denotes the commutator [Kn,Km] = KnKm −KmKn. By (1.5),
this transformation can also be written as

exp(iε2ωmn)Uτ = I + iε2
10∑

r=1

cnmrKr + iε2ωnmI +O(ε3) ,

resulting in

[Km,Kn] = i
10∑

r=1

cmnrKr + iωmnI .

We shall evaluate the coefficients on the right hand side in two steps. First
the cmnr will be found by computing the space-time transformation τ .

Obviously, translations commute with each other, with velocity shifts,
and with time shifts:

[Pj , Pk] = iωI , [Pj , Gk] = iωI , [Pj ,H] = iωI ,

where ω is still unknown and takes possibly different values in each of the
above equations. It is also easy to see that velocity shifts commute with
each other and that rotations commute with time shifts:

[Gj , Gk] = iωI , [Jj ,H] = iωI .

Furthermore, rotations commute with translations and velocity shifts along
their axes:

[Jj , Pj ] = iωI , [Jj , Gj ] = iωI .

All other pairs of basic transformations do not commute. The space-time
transformation corresponding to

eiεHeiεGje−iεHe−iεGj

is carried out step by step:

(x, t) → (x− εtej , t) → (x− εtej , t− ε)
→ (x− εtej + ε(t− ε), t− ε) → (x− ε2ej , t) ,
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where {e1, e2, e3} denotes the canonical basis of IR3. The resulting transfor-
mation is a translation, resulting in

[Gj ,H] = iPj + iωI .

Finally, we have to work on the rotations. The rotation matrices are given
by

R1(ϑ) =

 1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ

 , R2(ϑ) =

 cosϑ 0 − sinϑ
0 1 0

sinϑ 0 cosϑ

 ,

R3(ϑ) =

 cosϑ sinϑ 0
− sinϑ cosϑ 0

0 0 1

 .

Taylor expansion gives Rj(ε) = I + iεMj +O(ε2) with

M1 =

 0 0 0
0 0 −i
0 i 0

 , M2 =

 0 0 i
0 0 0
−i 0 0

 , M3 =

 0 −i 0
i 0 0
0 0 0

 .

Computation of the commutators gives

[Mj ,Mk] = iεjklMl ,

where the summation convention and the epsilon-tensor is used: εjkl = 1
if (j, k, l) is an even permutation of (1, 2, 3), εjkl = −1 if (j, k, l) is an odd
permutation of (1, 2, 3), and εjkl = 0 otherwise. As a consequence we have

[Jj , Jk] = iεjklJl + iωI .

The space transformation corresponding to

eiεGkeiεJje−iεGke−iεJj

is carried out step by step:

x → Rj(−ε)x− εtek → x− εtRj(ε)ek + εtek

= x+ εt(I −Rj(ε))ek = x− iε2tMjek +O(ε3) = x+ ε2tεjklel .
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The resulting transformation is a velocity shift, resulting in

[Jj , Gk] = iεjklGl + iωI .

Very similarly, we derive

[Jj , Pk] = iεjklPl + iωI .

For the evaluation of the various ωs, two properties of the commutator are
used: The antisymmetry,

[Km,Kn] + [Kn,Km] = 0 ,

and the Jacobi identity,

[[Km,Kn],Kl] + [[Kn,Kl],Km] + [[Kl,Km],Kn] = 0 .

For example, the Jacobi identity for the triple (Gj ,H, Pk) leads to

[Pj , Pk] = 0 .

Here we used the fact that the identity commutes with every other opera-
tor. Similarly, with the triples (Jj , Pk,H), (Jj , Gk, Gj), and (Jj , Jk,H), we
obtain

[Pj ,H] = [Gj , Gk] = [Jj ,H] = 0 .

By the antisymmetry of the commutator, the matrix with the entries ωjk

from

[Jj , Jk] = iεjklJl + iωjkI

must be antisymmetric and can therefore be written as ωjk = εjklbl with an
appropriate vector (b1, b2, b3). Redefining the rotation generators by Jj +
bjI → Jj leads to

[Jj , Jk] = iεjklJl .

The redefinition of the generators changes the rotation operators only by
phase factors and, thus, does not have any physical significance.

As the next step, we apply the Jacobi identity to the triple (J1, J2, G3),
resulting in

[J3, G3] = [J1, G1] + [J2, G2] .
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Rotation of the indices in this computation gives

[J1, G1] = [J2, G2] + [J3, G3] , [J2, G2] = [J3, G3] + [J1, G1] .

These 3 equations imply

[Jj , Gj ] = 0 .

This and the Jacobi identity for the triple (Jj , Jk, Gj) proves the antisym-
metry of [Jj , Gk]. With an argument as above, we can write

[Jj , Gk] = iεjklGl + iεjklbl ,

and, with the redefinition Gj + bj → Gj , produce the final commutation
relation

[Jj , Gk] = iεjklGl .

Similarly, we obtain

[Jj , Pk] = iεjklPl ,

after a redefinition of the Pj .
The Jacobi identity for (Jj , Gk,H) now leads to

[Gj ,H] = iPj .

Finally, with the triples (Jj , Gk, Pj) with j 6= k and (Jj , Gk, Pl) with (j, k, l)
pairwise different, we get

[Gj , Pk] = iδjkMI ,

with an arbitrary constant M , which cannot be determined within our alge-
braic framework. It turns out that this fact has physical significance, which
will be discussed further below.
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Dynamics of a single free particle

If the quantum mechanical system consists of a single particle, we introduce
the vector valued position operator Q = (Q1, Q2, Q3), with σ(Qj) = IR,
j = 1, 2, 3, and the Qj have common eigenvectors: For every x ∈ IR3 there
is a u(x) ∈ H such that Qju(x) = xju(x), j = 1, 2, 3. The velocity operator
V = (V1, V2, V3) is then defined by the requirement

d

dt
〈Q〉 = 〈V〉 .

In particular, for a time dependent pure state, given by ψ(t) ∈ H this gives

〈Vψ,ψ〉 =
d

dt
〈Qψ,ψ〉 =

〈
Q
dψ

dt
, ψ

〉
+
〈
Qψ,

dψ

dt

〉
SinceH is the generator of the time shift transformation, we have exp(isH)ψ(t) =
ψ(t + s). Comparing the generators of both sides (derivatives with respect
to s at s = 0) gives

dψ

dt
= iHψ ,

and, thus,

V = i[Q,H] . (1.6)

We shall need commutation relations between Q and P = (P1, P2, P3). We
start by postulating the action of the space shift operator on the eigenvectors
of Q:

e−ia·Pu(x) = u(x+ a)

with the consequence

eia·PQe−ia·Pu(x) = (x+ a)u(x) ,

giving

eia·PQe−ia·P = Q + aI .

Taylor expansion for small a leads to the commutation relations

[Qj , Pk] = iδjkI .
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As a next step we postulate the following relations between operators:

J = Q×P , H = −P ·P
2M

,

with J = (J1, J2, J3). These satisfy all the commutation relations stated so
far. Substitution of the second relation into (1.6) gives

P = MV , and, thus,

−H =
1
2
MV ·V ,

J = Q×MV .

If M where the mass of the particle, these where reasonable definitions of
momentum, kinetic energy, and angular momentum. However, comparison
of dimensions shows that M has to be measured in sec

cm2 . It is plausible that
M can be written as

M =
m

h̄
,

where m is the mass of the particle and h̄ is a fundamental constant with
the dimension of an action (Wirkung). It is called the Planck constant
(Plancksches Wirkungsquantum), and its value has been determined exper-
imentally: h̄ ≈ 1.054573× 10−34 joule-seconds.

At this point we conveniently redefine the operators P → P/h̄, H →
−H/h̄, J → J/h̄, such that the new operators correspond to momentum,
kinetic energy, and angular momentum.

Referring to classical mechanics, the HamiltonianH for a particle moving
in a position dependent external field given by the vector potential A(x) and
a scalar potential W (x) is defined as

H =
1
2
m(V −A(Q)) · (V −A(Q)) +W (Q) .
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The equations of motion and conservation laws

With the Hamiltonian given above, the state vector ψ(t) of a time dependent
pure state satisfies the abstract ordinary differential equation

ih̄
dψ

dt
= Hψ .

For the corresponding density matrix defined by %u = 〈u, ψ〉ψ a straightfor-
ward computation shows

ih̄
d%

dt
= [H, %] ,

which will also be assumed to hold for general (mixed) states.
For an observable A the evolution of the expected value is governed by

ih̄
d

dt
〈A〉 = 〈[A,H]〉 ,

with the consequence that the expected values of all observables, which
commute with the Hamiltonian, are conserved in time. Examples for the
free particle are the identity, P, J, and H, corresponding to conservation of
mass, momentum, angular momentum, and energy.

2 Coordinate representation and the Schrödinger
equation

For a one particle system we choose the Hilbert space H = L2(IR3), i.e. state
vectors are complex valued square integrable wave functions ψ(x) satisfying

1 = ‖ψ‖2 =
∫
IR3
|ψ(x)|2 dx .

The action of the position and translation operators are defined as

(Qψ)(x) = xψ(x) and (eia·P/h̄ψ)(x) = ψ(x+ a) .

Consequently, the momentum and angular momentum operators are given
by

(Pψ)(x) = −ih̄∇ψ(x) , (Jψ)(x) = −ih̄x×∇ψ(x) ,
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and the Hamiltonian of a particle in an external field by

(Hψ)(x) =
m

2

(
ih̄

m
∇+A(x)

)
·
(
ih̄

m
∇ψ(x) +A(x)ψ(x)

)
+W (x)ψ(x) .

For vanishing vector potential A, the equation of motion for a time depen-
dent wave vector becomes the Schrödinger equation

ih̄
∂ψ

∂t
= − h̄2

2m
∆ψ +Wψ . (2.1)

The density matrix %(x, y, t) of a pure state is

%(x, y, t) = ψ(x, t)ψ(y, t) .

For a mixed state its trace also has to be unity:

tr(%) =
∫
IR3
%(x, x, t)dx = 1 .

The density matrix of a time dependent state has to satisfy the von Neum-
mann equation

ih̄
∂%

∂t
= − h̄2

2m
(∆x%−∆y%) + (W (x)−W (y))% .

Returning to pure states, the probability to find the particle at time t in
the domain Ω ⊂ IR3 is given by∫

Ω
|ψ(x, t)|2 dx .

Computing the rate of change of this quantity, and using the arbitrariness
of Ω we derive the conservation equation

∂

∂t
|ψ|2 +∇ · j = 0 , (2.2)

with the probability flux

j =
h̄

m
Im(ψ∇ψ) .
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Let us know check some of the properties stated in the abstract setting
of the previous sections. For example, a Galilei transformation x′ = x− vt,
t′ = t, should leave the Schrödinger equation invariant, if the wave function
is multplied by a phase factor: ψ(x, t) = eiω(x,t)ψ′(x′, t′). Substitution in the
Schrödinger equation (2.1) shows that the appropriate choice for the phase
is ω(x, t) = m

h̄ v · (x− vt).
Now we turn to the conservation laws. Integration of (2.2) shows that

the property
∫
IR3 |ψ|2dx = 1 is conserved. The expectation value for the

momentum is

〈P〉 = 〈−ih̄∇ψ,ψ〉 = h̄ Im
∫
IR3
ψ∇ψ dx .

A straightforward computation shows that d
dt〈P〉 = 0 holds if the potential

vanishes, as expected. On the other hand, the energy

〈H〉 =
∫
IR3

(
h̄2

2m
|∇ψ|2 +W |ψ|2

)
dx

is conserved, when ψ solves (2.1): d
dt〈H〉 = 0.

A fundamental consequence of the quantum theory is the Heisenberg
uncertainty principle, i.e., the fact that certain pairs of observables cannot
be measured simultaneously with arbitrary accuracy. One of these pairs is
position and momentum.

The variance ∆A of the observable A is determined by

(∆A)2 = 〈(A− 〈A〉)2〉 = ‖(A− 〈A〉)ψ‖2

The uncertainty principle for position and momentum then takes the form
of the inequality

∆Qj∆Pj ≥
h̄

2
,

for every pure state. The proof relies on the commutation relation

i

h̄
[Pj , Qk] = δjkI ,

and on the identities

[A− 〈A〉, B − 〈B〉] = [A,B] , i〈[A,B]〉 = 2 Im〈Aψ,Bψ〉 ,
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where the latter holds for symmetric operators A and B:

1 = 〈I〉 =
i

h̄
〈[Pj , Qj ]〉 =

i

h̄
〈[Pj − 〈Pj〉, Qj − 〈Qj〉]〉

=
2
h̄

Im〈(Pj − 〈Pj〉)ψ, (Qj − 〈Qj〉)ψ〉 ≤
2
h̄
‖(Pj − 〈Pj〉)ψ‖ ‖(Qj − 〈Qj〉)ψ‖

=
2
h̄

∆Pj∆Qj .

Simple solutions of the Schrödinger equations can be obtained from
eigenfunctions of the Hamiltonian: Let (E, u(x)) denote an eigenvalue-
eigenfuction-pair, i.e., Hu = Eu. Then

ψ(x, t) = e−iEt/h̄u(x) (2.3)

is a solution of the Schrödinger equation. Since the time dependence only
occurs in a phase factor, all observables of this solution are constant in time.
Therefore a solution of this form is called a steady state solution with energy
E.

Eigenfunctions are only solutions of Hu = Eu with u ∈ L2(IR3). How-
ever, it can be shown that the continuous spectrum can also be recovered
by solving this equation, looking for solutions u, not necessarily in L2(IR3),
but satisfying certain growth conditions at infinity. These so called spectral
functions also correspond to pysically meaningful states of the form (2.3).

For example, the functions uk(x) = eik·x, k ∈ IR3, are spectral functions
of the Hamiltonian of a free particle (W = 0) corresponding to the spectral
values

Ek =
h̄2|k|2

2m
.

Tunnelling

The tunnelling effect is one of the striking differences between classical and
quantum mechanics. A particle may cross a potential barrier higher than
the energy of the particle.

Let us consider a rectangular potential barrier:

W (x) =

{
V0 for 0 < x < a ,
0 elsewhere.
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The one-dimensional steady state Schrödinger equation with energy E is
given by

− h̄2

2m
d2ψ

dx2
+Wψ = Eψ , (2.4)

where we assume 0 < E < V0. A classical particle with energy E, travelling
towards x = 0 from the left, would be reflected by the barrier. Setting
E = h̄2k2

2m , k > 0, and V0 − E = h̄2β2

2m , solutions of (2.4) have the form

ψ(x) =


A1e

ikx +B1e
−ikx , x ≤ 0 ,

Ceβx +De−βx , 0 ≤ x ≤ a ,
A2e

ikx +B2e
−ikx , x ≥ a .

The number of free constants is reduced to 2 by requiring ψ to be continu-
ously differentiable.

The probability flux, computed in the three regions, is given by

j =
h̄

m
Im
(
ψ
dψ

dx

)
=
h̄k

m
(|A1|2 − |B1|2) =

2h̄β
m

Im(CD) =
h̄k

m
(|A2|2 − |B2|2) .

Away from the barrier (i.e., for x < 0 and x > a), the contribution Aje
ikx

produces a rightgoing flux, and Bje
−ikx a leftgoing flux. The two remaining

constants are determined by requiring a certain behaviour at infinity. We
fix the incoming fluxes by choosing A1 = 1, B2 = 0. This should reflect a
situation, where electrons move towards the barrier from the left. Then the
part B1e

−ikx can be interpreted as a reflection, and the part A2e
ikx as a

transmission. From the representations for the flux we obtain the equation

R+ T = 1

with the reflection coefficient R = |B1|2 and the transmission coefficient
T = |A2|2. These can be interpreted as probabilities for the electron to
be reflected and transmitted, respectively. The term tunnelling is used for
the fact that the transmission coefficient is positive in general, i.e., the elec-
tron crosses the barrier with positive probability although its kinetic energy
would lead to reflection in a classical description. Solving for the coefficients
in the representation of the wave function gives

B1 =
|z|2(eaβ − e−aβ)
z2e−aβ − z2eaβ

,

showing that the reflection coefficient tends to zero with the width a of the
barrier.
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Wigner transformation — The classical limit

In this section a connection between quantum and classical mechanics is
established. We start with a nondimensionalization of the von Neumann
equation

ih̄
∂%

∂t
= − h̄2

2m
(∆x%−∆y%) + (W (x)−W (y))% .

Let W0 denote a typical potential difference such that the dimensionless
Ws = W/W0 takes moderate values. Then we introduce reference values
L0 and t0 for length and time, respectively, and the corresponding scaling
xs = x/L0, ts = t/t0. Here L0 is chosen as a length scale which is typical
for an experiment. We assume that L0 is large enough such that the action
L0

√
mW0 is large compared to h̄, i.e.,

ε =
h̄

L0

√
mW0

� 1 .

Then t0 is determined such that ε = h̄/(t0W0). Carrying out the scaling in
the von Neumann equation and dropping the subscripts s for simplicity, we
obtain

iε
∂%

∂t
= −ε

2

2
(∆x%−∆y%) + (W (x)−W (y))% .

We are interested in approximating this equation for small values of ε. This
is made possible by the so called Wigner transformation (Eugene Wigner,
1932). It consists of two steps: First, a coordinate transformation in the
6-dimensional (x, y)-space is introduced:

x = ξ +
εη

2
, y = ξ − εη

2
.

In terms of (ξ, η), the von Neumann equation becomes

i
∂%

∂t
= −∇η · ∇ξ%+

W (ξ + εη/2)−W (ξ − εη/2)
ε

% .

The second step is a Fourier transformation: The Wigner function is intro-
duced by

w(ξ, k, t) = (2π)−3
∫
IR3
%(ξ + εη/2, ξ − εη/2, t)e−ik·ηdη .
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The inversion formula then gives

%(ξ + εη/2, ξ − εη/2, t) =
∫
IR3
w(ξ, k, t)eik·ηdk =: ŵ(ξ, η, t) .

Observing ∇ηŵ = îkw, the Wigner function satisfies the Wigner equation

∂w

∂t
+ k · ∇ξw − (2π)−3

∫
IR3

W (ξ + εη/2)−W (ξ − εη/2)
iε

ŵe−ik·η dη = 0 .

In this equation, we may let the small parameter ε tend to zero. Observing
ηŵ = ̂i∇kw, the classical limit ε→ 0 gives formally

∂w0

∂t
+ k · ∇ξw0 −∇ξW · ∇kw0 = 0 , (2.5)

for w0 = limε→0w.
The physical significance of the Wigner function is easily seen for a pure

state %(x, y, t) = ψ(x, t)ψ(y, t). Then the probability density for the position
of the particle is given by

|ψ(x, t)|2 = %(x, x, t) = ŵ(x, 0, t) =
∫
IR3
w(x, k, t)dk ,

and the probability flux (or momentum density) by

εIm(ψ(x, t)∇ψ(x, t)) = −i∇ηŵ(x, 0, t) =
∫
IR3
kw(x, k, t)dk .

These two relations show that the new independent variable k can be inter-
preted as a momentum, and the Wigner function has some properties of a
probability distribution in phase space (i.e., position-momentum space). Its
zeroth order moment with respect to k is the probability density in position
space and its first order moment the momentum density. However, there is
one problem with this view. It can be shown that the Wigner function may
take negative values in general.

In the classical limit, on the other hand, there is no problem like this.
Solutions of (2.5) remain positive if they are positive at some point in time.
The Liouville equation (2.5) is the correct equation for a probabilistic de-
scription of classical mechanics. Let (x(t), k(t)) denote a classical particle
trajectory, i.e., a solution of

ẋ = k , k̇ = −∇xW (x) .

Then, for solutions w0(x, k, t) of (2.5), d
dtw0(x(t), k(t), t) = 0 holds.
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